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DETERMINATION OF CCMBUSTION TIM LAG, PARAMETERS

IN A LIQUID BIPROPELLAXT ROCKET MOTOR

SU)O(AY

The importance of time lag parameters in a systematic study of com-

bustion instability in liquid bipropellant rocket motors is emphasized in a

review of early treatments of this phenomenons Useful appication of any such

treatment is dependent upon the ability to determine reliable values for these

time lag parameters. It is the purpose of this study to develop a theoretical

model of the combustion process amenable to experimental verification and to

evaluate the parameters defined therein by laboratory measurements under actual

rocket motor operating conditions,

Crocco's concept of such a combustion time lag and its dependence upon

chamber conditions is discussed, and complex equations are derived by one-

dimensional analysis for two theoretical models of a rocket combustion damber

having such a time lag. Both models represent low-frequency, small-amplitude

oscillations in chamber pressure and injection flow rates. The exit boundary

condition is given by "nozzle impedance" relations for flow through a conical

exhaust nozzle with non-isentropic oscillations in gas properties at the entrance.
Changes in flame temperature resulting from small variations in instantaneous

mixture ratio are considered$ but the effects of such variations on the time

lag, the position of combustion front, and the generation of reflected waves

at the nozzle are neglected in both analyses.

The simplified model approximates the actual combustion distribution

by a discontinuous front at a fraction (t- ) of chamber length. Derivation

of the combustion equation is based upon the mass conservation rule applied

collectively to the gas produced, contained in, and exhausted from the chamber

as a whole. The refined model is developed from an extension of Crocco's

a
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analysis to include the condition of oscillating injection flows. An arbitrary

form of combustion distribution is introduoed, and the equations for chamber

pressure and gas velocity are derived for the case of moderate frequency, neutral

oscillations* These derivations are based upon principles of mass, momentum,

and energy oonservation, the perfect gas laws a droplet dyamics equation, and a

buring rate equation involving the aforementioned time lag concepts. An order

of .magnitude analysi s and an iterative scheme are eployed to extrapolate these

equations to low frequencies. Final solutions for the time lag and the inter-

action index between chamber pressure and time lag are obtained by the applica-

tion. of the, a.oromentioned noazzle boundary. condition. The final combustion

cham. r, equations resulting from both theoretical analyses are compared tam

by-term) and a combined model is formed from bpth equations, following the form

of the simplified model and embodying correction factors derived from the re-

fined treatments

...... The quantities to be determined experimentally as inputs for the

theortical. analysis and the methods for obtaining these data are discussed.

.The design and operation of a modulating unit, producing sinusoidal injection

flow opcillatioznp are described, and the experimental implications of near-

constant instantaneous mixture ratio restrictions are notedo The actual measuring

vehicle and its auxiliary equipment are mentioned. along with detailed accounts

of the sensing, transducing,, and recording instrumentation utilized in the

measurements.

Calculation procedures employed in the reduction of primary data and

in their application to the complex combustion chamber equation are outlined.

Measured values of chamber and injector pressure oscillationes steady state

gas velocity distributions, and steady state combustion and flow parameters

are presented for motor operation at three chamber pressure levels of 300#f450| and 600 psia over a range of modulating frequencies from 60 to 250 cycles
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per second. The results of two calculation procedures are presented in tabu-

lar and graphical form as values of rocket chamber transfer function, mean

chamber gas residence time, average position of the combustion "front". mean

total combustion time Jag, sensitive portion of this time lag, and index of

interaction between time lag and chamber pressure. Finally, these results are

criticized with regard to their validity and accuracy, and conclusions are

drawn regarding the general applicability of the theoretical model and experi-

mental methods*
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DIERMNATION OF CUMUSTION TIM LAG PARAMMRTS

IN A LIQUID BIPROPELIANT ROCKEr MOTOR

INTRODUCTION

The extensive occurrence during recent years of destructive pressure

oscillations in large rocket motors has led to considerable interest and ac-

tivity in the field of combustion instability. Zndeavors to scale the designs

of small test motors up to large operational sizes9 attempts to improve rocket

performance through concentration or intensification of the combustion pro-

cessess and efforts to reduce component weights by lowering the pressure

levels in propellant supply equipment have resulted in the incidence of such

instabilities in a surprisingly large number of rocket development projects.

Elimination of these troublesome vibrations through blind Scut-and-trym

methods has eventually proved successful in some of these casee but these

methods suffer from their lack of general applicability to engines other

than the particular ones for which they were devised and thus merely em-

phasize the lack of basic understanding associated with the appearance of

such instabilities. The demand for more rational procedures for overcoming

these vibrations and the desire for reliable generalized design criteria to

prevent their occurrence have necessitated fundamental studies of the nature

and causes of the phenomena from theoretical as well as experimental view-

points.

A common annoyance at the outset of any relatively new research

effort is the question of definition, and rocket combustion instability is

certainly not excepted from this problem. A multitude of terms (including

rough burning, screech, squeal, scream, whistle, chug, groan, hum, buzz, and

others) have been employed to describe the acoustic quality of pressure

oscillations in rockets. However, the essential differences between stable
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and unstable oscillations as well as the distinctions between various types of

instabilities must be expressed in subjective terms if they are to be widely

accepted and applied. Perhaps the most comprehensive treatment of this matter

is that given by Crocco and Cheng (1) in a recent publication. The essence of

their discussion will be summarized briefly. In normal combustion the presence

of turbulence$ inhomogeneity of mixtures and other effects may cause the appear-

ance of fluctuations in the gas and liquid properties within the rocket chamber,

These are purely random perturbations, howeverj and if they are observed at

points in the chamber sufficiently distant from one another there will be no

time-vise correlation in the variation of any one quantity between the two

points. On the other hand$ if the fluctuations exhibit definite coordination

in the frequencies and amplitudes with which they occur at any two points of

the chamberp no matter how distant then they lose their random character and

become organized oscillations representative of abnormal combustion An exam-

ination of the amplitudes of these coordinated perturbations then determines

whether combustion is stable, neutrally-stable g or unstable according as they

die outp remain constantp or increase with time,

The second consideration in terminology is that of identifying the

various types of unstable behavior encountered by different investigators.

The most widely accepted classification scheme is based upon differences in

the underlying mechanisms cau-,ing instabilities and the general breakdown

places unstable oscillations into one of three major groups9 characterized

primarily by their frequency rangeso (a) low frequency instabilities,

cammonly referred to as Oehuggings. with frequencies from as low as thirty

to as high as two hundred cycles per seoond (b) high frequency., or vscreamingN

oscillations occurring at frequencies between several hundred and several

thousand cyviles per secondl and (C) intermediate frequency instabilities lying

in a range between the other two types.

The destructive phenomena associated with these types of unstable
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oscillations may be quite different, and in the case of the first two are easily

identified. Low frequency instability usually arises from an interaction be-

tween the feeding system and the combustion process (although theoretical

studies (2) have shown that an *intrisic3 instability in which there is no

feed system coupling is still possibJ4 and the characteristic time associated

with the period of this "chuggingm instability is the "charging timen or

emptying time of the rocket chamber (3, O). The damage incurred by the action

of this type of oscillation is usually associated with structural failures

resulting from large amplitude mechanical vibrations of the rocket components j
or the entire propulsion system. One common *cure" for this problem is simply

an increase in pressure drop across the injection system of the liquid pro-

pellants, a conclusion which is assLly deduced from the theory.

Screaming type oscillations, however, occur at frequencies much too

high for any serious interaction with the feeding system and are considered

to be of the nature of acoustic oscillations deriving their energy from the

combustion process. For such oscillations, therefore, the characteristic

time giving the order of magnitude of their period is the wave-travel time

between the boundaries of the chamber associated with the particular mode of

vibration encountered. The amplitudes of such waves may reach as high as a

hundred percent of steady rocket chamber pressure, and the extreme increase

in heat transfer to the chamber and injector in such circumstances is very

often sufficient to destroy the motor. No generally acceptable mechanical

artifice or change in geometric design has yet been developed to completely

subdue or prevent the existence of such waves, and it is this perplexity

which has been primarily responsible for the increased attention placed on

combustion instability studies.

The t'Urdp or intermediate frequency, instability has only re-

cently been satisfactorily identified as a separate phenomenon with causes

and manifestations distinct from the other two. Berman and Cheney (5)

J1



associated its appearance with the existence of an Noff mixture-ratios zone

or "temperature discontinuity u which has been interpreted by Crocco (6) and

Scala (7) as an 'entropy wave'. This wave travels downstream with the fluid

particle velocity and reflects a pressure disturbance from the nozzle which

moves upstream with the wave velocity, producing a charaoteristic period of

oscillation shorter than that of the chugging vibration and longer than the

screaming one1 hence the descriptive term mintermediate-frequencym.

Until very recently experimental work in the field of rocket com-

bustion instability consisted primarily of two major effortsR observation

of the physical characteristics of the oscillations. e.g., their frequencies

amplitudes, and starting transients; and attempts to control or eliminate

the vibrations through the introduction of stabilizers of various types.

Both these attacks have been thoroughly reviewed in a survey paper by Ross

and Datner (8) and it will suffice here to mention them only briefly* The

initial task of identification was performed chiefly through visual or op-

tical means by the application of photographic techniques to transparent

motors or observation slits out into conventional motors (5J 99 10, I)0

This restriction to optical methods was primarily due to the unreliability

of existing pressure instrumentation, and of late, data of a more quantita-

tive nature have been reported (12, 139 14, 15) on the basis of more precise

pressure measurements. Meanwhile, the work on stabilizers reported in the

unclassified literature has progressed from basic studies of the character-,

istics and possible applications of servo-controls in the feed system

(36, 17) to the conception of a particular design for such a control and a

detailed analysis of its behavior (18).

During this same period, theoretical studies of instabilities

continued to progress in dealing with more realistic models of the com-

bustion chamber and in extending the range of their applicability to more

general and more interesting cases* Of course these improvements were not
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attained without additional mathematical complicationsj so it is perhaps not

surprising that so very little experimental work has been directed toward the

evaluation of hypotheses or conclusions of the theory. However) in all ex-

isting theoretical treatments a number of combustion parameters arise from

both physical and mathematical considerations which are of primary importance

in describing the stability behavior of any liquid rocket motor. The work

reported in this paper was conducted with the aim of evaluating some of these

parametersj and to this end it embodies a three-fold approacht (a) extension

of existing theory involving important combustion stability parameters to a

range of physical variables amenable to empirical examination, (b) determi-

nation of typical values for these parameters by application of the derived

equations to experimental measurements, and (o) an estimation of the range of

application and vilidity of the relationships expressed by the theoryo

-1!
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CONCEKPS AND THEORY

Theoretical Background

Attempts to analyze mathematically the behavior of a rocket motor

under conditions of oscillating chamber pressure have a historical background

almost as extensive as the existence of the phenomenon itself* Perhaps the

earliest efforts in this direction were carried out by Von Karman and his

group at the Jet Propulsion Laboratory of the California Institute of Technology

shortly after the first appearance of "chugging3 in a rocket under test there

in 1941. However, the first published theory appeared in a paper by Gunder and

Friant (19) and a ssequent discussion of this paper by Yachter (20), Probably

the most important contribution of these early treatments was the introduction

of the concept of a combustion time lag (conceived independently by Von Karman's

group) between the instant of injection of a particle of liquid propellan and

the succeeding instant of burning in which that particle is transformed into

hot gas capable of exerting chamber pressure. The influence of this time lag

on the theory is evident when one notes that it has been the single parameter

common to all succeeding analytical papers describing combustion instabilities

in any of the various regimes previously mentioned. Its mathematical signifi-

canoe is obviouss since it produces one or more terms in the combustion

chamber equation which must be evaluated at a time different from the re-

maining terms. This time delay produces a sort of uresponse time3 for the

rocket motor and hence provides a feedback mechanism essential for unstable

oscillations in the chamber-injector system.

Primarily because of the lack of information concerning its magni-

tude or physical variation9 this time lag was originally treated as a constant

for all propellant elements under a particular set of operating conditions

and was assumed to be insensitive to small variations in these conditions.

I



i-

7.

Neglecting the effects of small oscillations upon the time lag was considered

compatible with the overall assumption of linearization, common to all theo-

retical analyses reported herein, in which each time-dependent variable is

treated as the sum of a steady state quantity plus a small perturbation. On

this basis Gunder and Friant derived equations for response of the rocket

chamber to oscillations in propellant flow rates for both monopropellant and

bipropellant systems. They assumed that the chamber pressure was directly

proportional to the injection rates and considered only the effects of inertia

and friction of the propellants in the feed lines of a pressurized supply

system. Yachter, in a discussion of their paper, indicated the importance of

the chamber itself as a capacitance in which the product gases could be

stored; and he derived an expression for the critical injector pressure drop

for stable operation, without regard to the inertia of the liquids in the

feed system. Following these two analyses, Summerfield (4) combined the

effects of feed system and chamber capacitance to obtain an equation from

which he calculated values for the limits of stable operation in terms of the

frequency of oscillation and the magnitude of the time lag.

These theoretical contributions provided a satisfactory explanation

for the presence of low frequency instabilities in cases where the injector

flow rates responded to fluctuations in chamber pressure. However the exis-

tence of observed instabilitiesq in a range of frequencies sufficiently high

so as to preclude the possibility of injection coupling, could not be ex-

plained on the basis of a constant combustion time lag. The theoretical

analysis of this "screaming" phenomenon, as well as the so-called fintrinsic'

case of constant injections low frequency instability, was accomplished by

Crocco (2, 21) through the introduction of the concept of a sensitive time

lag. Originally this sensitivity was treated as a purely enviornmental

activity in which the processes contributing to the total combustion time lag

were considered to be affected by thermodynamic and gas dynamic conditions



such as pressure, temperature, density, or gas velocity. Any one of these

parameters could then be related to the others by means of the equation of

state or compressible flow equations. Of these several properties, pressure

is probably the most amenable to experimental measurement; hence this was

treated as the primary variable on which to base the correlation of all the

others. Crocco then postulated an indexs n, to express the interaction be-

tween chamber pressure and the time lag. 1

Fundamental Concepts

In any liquid propellant rocket motors a number of physical and

chemical processes take place during the transformation from raw propellants

to hot gases. These preparation processes are extremely complicated indi-

vidually, and their mutual interactions are almost totally undetermined.

However, the gross effects of pressure, temperature, density, and gas ve-

locity may be discussed in a qualitative mnner and may help to provide a

physical basis for the ensuing mathematical derivation of a burning-rate

equation. First, the liquid streams issuing from the injector are broken up

into droplets by capillarity and by the relative velocity between liquid and

gas velocities. The rate at whioh this breakup occurs as well as the final

droplet size distribution for a particular injector will depend to a large

extent upon the density and velocity of the combustion gases and, thus, upon

chamber pressure. In general, an increase in pressure produces smaller drop-

lets and speeds up the atomization process, thereby decreasing the time con-

Very recently, a second interaction index has been introduced by Scala (7)

to express the dependence of time lag upon mixture ratio. This has been of

considerable importance in predicting the appearance of intemediate-frequency

instabilities; but it does not appear in the present treatment, which is based

primarily upon the high-frequency and intrinsic low-frequency analyses.
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sumed in this phase of propellant preparation. Following and during atomiza-

tion, evaporation at the droplet surface occurs. The rate of this vaporiza-

tion is influenced by the droplet size and by a sort of film coefficient.

The result of increased chamber pressure acting through both of these parameters

is an increase in the overall evaporation rate, decreasing this contribution

to the total time lag. Similarly the increase in temperature of both liquid

and unburned gas by diffusion and convection will be accelerated by an in-

crease in gas pressure, Also, the kinetics of most of the combustion reactions

encountered in rocket motors is speeded up by increasing the pressure within

the medium, particularly when the reaction occurs in the vapor state. In

fact, the only process ocuring during the time lag which might conceivably

be totally independent of the thermodynamic conditions within the chamber is

that of liquid-liquid mixing, in a bipropellant motor. Certain other pro-

cesses will take place which may be nearly unaffected by chamber pressure;

but these, along with liquid phase mixing, are likely to take place in a time

and space very close to injection. Therefore$ a graphical representation of

an index of interaction as described would probably show a very small value

close to the injector, with increasing values during the later phases of the

preparation. This distribution of an interaction function may be schematized

as having zero magnitude for a portion of the total time lag and a constant

magnitude for the remaining portion.

As a consequence of these considerations, one concludes that the

total combustion time lag in a liquid propellant rocket may be represented

in an approximate fashion as the sum of an insensitive portion and a sensi-

tive portion, the former being independent of the temperature and pressure of

the chamber gases and the latter generally decreasing with an increase in

chamber pressure through the action of a constant interaction index. Thus:
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where the subscript T is used to denote the total value and i indicates the

insensitive portion# This schematic time lag is shown in Figure 1.

Following the usthod of Crocco (1, 6) in expressing the above ideas

mathematically, one may state that the transformation of propellants into hot

gases will be complete after sufficient transfer of energy has taken place to

raise each particle to a certain energy level, Z, which may be considered

similar in concept to an activation energy for the overall preparation and oin-

bustion processes. Since the equilibrium flame temperature varies primarily

with mixture ratio of the incoming propellanta and only in a secondary manner

with chamber pressure, this final energy level may be considered to have a

constant value, provided the mixture ratio is constant and pressure osoilla-

tions remain small in comparison to the average chamber pressure. If one

represents the combined rates of aljthe preparation and combustion processes k
as a function, $ ( ) ..... ), of the various aero-thermodynsmic parameters,

then the time lag will be ended onl$ when the integrated value of this rate

function has reached the final energy level, Sal thus, for a particle injected

at time t - and burning at time ta

{f !) c -constaqr. (2)

Under the restriction of small perturbations, the rate function

may be written ass

where the superscript bar indicates mean values of the oscillating quantities

and the prime designates the perturbed portion,

Introducing the correlating functions between pressure and the re-

maining parameters, t.his equation becomes"



1+

~Td ad j~ lp (4)

from which an expression for the interaction index, defined here as the in-

fluence of small fractional changes in pressure on the rate function, takes

the form:

aTdCP 9i

The instantaneous rate of the preparation processes is then:

(6)

and Equation 2 becomes:

Imep'Ct ,,Ea (

The value of T" (', , . ) will change ony through

spatial non-uniformities of a, , etc.; and since the velocities of liquids

and gases in the chamber are usually small compared to the sound velocity, the

steady state values of pressure and temperature are practically uniform through-

out the chamber. Then, since n and Ea are treated as constants,

tT tT
from which one may easily obtain a relation for the variation in time lag

around its average value ass

T T

-TT'
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the latter part of this equation having been deduced from the assumed

constancy of the insensitive portion of the time lag.

A number of possibilities exist for the application of the time lag

concept to the overall physical model of combustion described, In the actual

case3 if one follows two propellant elements from the instant of injection to

their final reacted gaseous state, their volumes are small at first , increas-

ing rapidly as exothermic chemical reactions take place, and reaching a final

value when combustion becomes complete. The schematization introduced by the

above time lag concept is the replacement of this gradual complex volume change

by a step-wise transition from droplet volume to final gaseous volume. In the

most general case, this approximation is made individually for each element of

combustion gas, resulting in a time lag and a corresponding space lag (the

distance traveled during these preparation and reaction processes) for each

pair of propellant elements destined to react together. The combined picture

for all propellant elements is then one of continuous combustion in both space

and time, since these lags vary continuously over a finite range between indi-

vidual particles injected at the same instant but a different location in

the injector pattern. Further simplifying assumptions were made in a series

of papers by Crocco (2, 21) and Cheng (22p 23) which have been well summar-

ized in a monograph on the subject of combustion instability in liquid rocket

motors (1). In these additional cases the steady state combustion pattern

takes one of the following forms: (a) all burning takes place at a single

spatial location, but the particles require different times to reach this

location, resulting in distributed time lags and a concentrated space lag;

it (b) all particles require the same preparation timeg but their different

velocities carry them to various locations, producing a concentrated time

lag with distributed space lags; and (c) the more drastic simplification

in which combustion is considered completely concentrated at a given position
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in both time and space. The present paper includes only the two extreme

cases, i.e., distribution of both time and space lags and complete concer.-

tration of both lags.

Another refinement to the original instability theories was the in-

troduction by Crocco and Cheng (24) of the influence of the exhaust nozzle

geometry. This effect had been observed by Berman, Logan, and Cheney (5, 9)

in an experimental motor; and the gasdynamic relations involved in oscillating

flow through a supersonic nozzle were derived by Tsien (25) for the isothermal

case* Crocco (26) extended the theory to several additional cases and applied

the so-called "nozzle impedance" relations as a boundary condition for the

equations of the combustion chamber* The further extension of the nozzle

equations to include low frequency, non-isentropic oscillations at the entrance

section"for both linear and non-linear velocity distributions is contained in

Appendix A of this paper.

Combustion Chamber Equations

In developing a usable combustion equation for application to ex-

perimental data, the same general scheme of analysis is employed regardless

of the model chosen to represent the actual combustion process. Equations

are obtained for the variations in pressure, velocities of gas and liquid, and

gas density or entropy. These are then related by a burning rate equation

containing the desired time lag parameters and reduced to a final single

equation involving chamber pressure and time lag by the application of boundary

conditions at the nozzle and injector ends of the chamber. This overall method

has been applied to several combustion models by Crocco and Cheng (1); and the

analysis contained herein is intended as an extension of their work to include

the condition of oscillating injection flow rates, which is the actual situa-

tion encountered in the laboratory work described later.



Two distinct physical models of the combustion process are treated.

The simplified model deals with the chamber as a whole, approaching the flow

field from a macroscopic point of view while the more refined model is de-

rived from an analysis of differential increments of mass, volume, and length.

The framework for both models is furnished by the one-dimensional equations of

conservation of mass, momentum, and energy in unsteady flow. Perturbations of

all physical quantities are limited to small fractions of their average or

steady state values; hence the treatment is linearized throughout, with squares

and products of perturbations considered negligibly smallo A number of other

assumptions are common to both theoretical models. These aret

1. Oscillations in f'luid properties are neutrally stable with time

and are of a sinusoidal nature.

2. In keeping with the assumption of one-dimensionality, the time

lag is assumed uniform across any axial section of the motor.

3e Instantaneous variations in mixture ratio are sufficiently small

so as to have negligible effects upon the combustion time lag or upon the gen-

eration of reflected waves at the nozzle*

4. Combustion is completed within the chamber length the flow of

burned gas through the exhaust nozzle is isentropic following a fluid particle.

5. The velocity gradient along the axis of the subsonie portion of

the nozzle is that corresponding to a conical geometry.

A schematic representation of the two models is illustrated in

Figure 2.

The model assumed in the simplified analysis is the result of a

series of alterations to an original representation by Crocco (2) of low fre-

quency oscillations in a monopropellant rocket motor* This was extended to a

bipropellant motor with combustion occurring at the injector face and with

quasi-steady flow through the nozzle. Further modifications included reloca-

tion of the combustion at a fixed front downstream from the injector and



oscillating exhaust flow occurring in accord with a linear velocity gradient

along the subsonic portion of the nozzle. The present model is one in which

the actual combustion distribution is replaced by a discontinuous 'front', or

burning zone$ at an arbitrary fraction ( - ) of chamber length. the position

of this front being permitted to oscillate with chamber gas properties, Up-

stream of this front the gases are assumed to have zero velocity, while down-

stream they have a uniform velocity that is constant under steady-state con-

ditions° Also, in this representation the velocity gradient along the axis

of the exhaust nozzle is arbitrary, and calculations for nozzle impedance

parameters are based upon the special, non-linear case of a conical geometry.

The basic equation governing this model is simply the mass conserva-

tion equation stated in the form rThe rate of increase of the mass of gas

within the chamber is equal to the difference between the rate of production

of hot gases and the rate of discharge of these gasesom Stated mathematically

this becomes:

wheres

Mg = total mass of gas within the chamber at any instant.

mb = instantaneous mass rate of production of burned gas.

mhe = instantaneous mass flow rate into the exhaust nozzle.

Before continuing with the derivation, it might be well to point out

several heretofore unmentioned assumptions and approximations which are implicit

in a Oblack-boxm treatment of this sort. Perhaps the most evident of these is

the omission of any effects of the presence of liquid droplets or streams.

This simplification is based upon the premise that the volume occupied by the

liquid is quite small in comparison to the total chamber volume; therefore the
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presence of such droplets cannot seriously effect the volumetric changes in

hot gases resulting from pressure and temperature oscillations* However, the

existence of a finite droplet velocity throughout a portion of the chamber

may have a noticeable effect upon the magnitudes of both time and space lags,

since it may enter into momentum and energy equations in a primary way. Then,

too, these droplets will certainly be sensitive to fluctuations in gas velocity

and may thus contribute to oscillation in the position, distribution$ and time

histories of the sources of hot gas production. Such considerations are in-

eluded in the more refined analysis which is presented later.

Another restriction inherent in'this simplified mass conservarion

equation is its validity only at very low frequencies of pulsation. This is

exhibited by the tacit assumption that the mass of gas within the chamber

oscillates as a whole and, therefore, that the entire chamber experiences the

same gas pressure at any one instant of time. The physical basis for this

approximation lies in the fact that at extremely low frequencies the period

of one oscillation is much longer than the time required for a pressure wave

to travel the length of the chamber and returns thus, any small change in

pressure will be transmitted essentially instantaneously throughout the

chamber, and a new equilibrium level will be reached before another small

change has taken place. This is strictly true only in the limit of zero

frequency oscillationsp ioe., a continuous succession of steady state condi-

tions, and hence represents a quasi-steady flow restriction which is also

removed in the refined analysis.

Returning to Iquation 10, one must express each of the three mass

rates in terms of quantities amenable to experimental measurement* If one

defines a fractional variation in mass flow rate around an average value bys

Am rr
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and an average gas residence time for the full chamber by:

where the superscript bar is used to denote average or steady-state conditions,

thenEquation 10 may be written in a fractional form ass

with all terms to be evaluated at the same instant of time, to

Consider the third term, representing hot gas generation. From the

concept of a combustion time lag described previously, it is apparent that an

element of mixed propellants burning at time t and contributing to 'b (t) must

have been injected at a previous instant t - where 'T represents the

total cambustion time lag of this element. Then, those elements which burn

over the incremental time dt required a corresponding, but not equal, time

interval d(t- VT) for injection. Equating these two expressions for the same

mass at different times in its history gives:

*( (t) .'Tnb d.tm'n ' b( - (12)

Where k symbolizes the mass rate of injection of the total propellants, and

the superscript parentheses indicate the times at which the terms are to be

evaluated.

This equation may be re-written asa

where the injection rate is delayed in time by the average value of the total

time lag (introducing only second order errors), and the sensitive time lag

has been substituted in the derivative expression, since the insensitive

portion of the total lag does not vary with time0

! .K
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The variation of the time lag around its steady-state value has been

derived in Equation 9, and differentiation of this expression with respect to

time, again evaluating the delayed term at its average time and neglecting

higher order quantities$ givess

j dt (JJ4)

If one now defines a fractional variation in chamber pressure bye

Equation 34 may be written in the desired form

( ctt

Substituting this expression in Equation 13, introducing the previous

definitions of fractional mass flow oscillations, and neglecting produos of

perturbations, one obtains v
-. =G"i(t- tT) M) )

Ct) (26)

The injection flow rate oscillati6n for a bipropellant rocket may be

broken up into its two components. Performing this separation and introducing

a mixture ratio parameter9 H,9 defined by:

wheres

with the subscripts 0 and F indicating oxidizer and fuel, respectively, gives

+. __ _./
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Substitution of these terms into Equation 16 yields the final expression for

the fractional variation in rate of gas production* Thus:

The next term to be examined and amplified is the exhaust rate, /e"10

The results of the derivation of Appendix A indicate the following relation

between mass flow, pressure, and entropy fluctuations at the entrance to the

nozzle:

Aee[i 7+ W+

where:

.(6/9) -(s/)/Q -fractional entropy perturbation.

= length of subsonic portion of nozzle.

o velocity of sound at nozzle throat.

W1, W2 = integrated nozzle velocity parameters.

A= frequency of oscillation.

= ratio of specific heats of gas.

Some additional conditions must be specified in order to evaluate the

fractional variation in entropy. First. the discontinuous combustion *frontO

is arbitrarily located at a fraction (1- ) of the chamber length downstream

from the injector. Second, it is assumed that after burning and throughout

the remainder of its stay within the chamber1 each particle preserves the

entropy with which it was formed, although its temperature and pressure may

both oscillate, Thus, a particle which burns at a time t will reach the nozzle

entrance at a time t i--P E with the particular value of ; which it had at

the time t. Conversely, the entropy of gas particles entering the nozzle at

time t is precisely the entropy given to them during burning at timet-Fles

- .1
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Thuss E Ct)

(20)

The oscillations in entropy taking place at the burning station can

be expressed in terms of measurable quantities through the first law of thermo-

dynamics, yielding:

where is the instantaneous equilibrium gas temperature at the end of

combustion. If one neglects the variation of this adiabatic flame tempera-

ture with small pressure oscillations, 73 b for any element of mixture is

uniquely determined by the mixture ratio of that element at the time of burning,

which is precisely the mixture ratio at the instant of injection of that element

a time lag earlier. Enploying a correlation factor, K, defined by:
2L-- -r" (IrL

3 r)r~
the gas temperature oscillation at the burning station is written as:

- 6 5 (22)

where the subscripts b and i have again been used to designate burning and in-

jection, respectively. Substitution of the fractional flow rate oscillations

at the injector and introduction of the resultant equation, along with Equation

21,into Equation 20 produces for the entropy oscillations,

F {w1 i<(' )A (23)

which results in a final evaluation for the exit mass flow fluctuations as

follows:
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---

The remaining term in the original mass balance equation is that

which expresses the rate of accumulation of mass in the combustion chamber.

Since the volume of the chamber is fixed, any perturbations in the mass con-

tained therein must arise from density changes only. Expressing the total mass

as an integrated density function and applying the perfect gas law gives:

~ p (24)(t go-r

where, as previously stated, pressure is assumed uniform throughout the chamber.

For a cylindrical ohamber with combustion concentrated in the aforementioned

location tpe thime rate of change of this mass becomes: c t h

The integral involving temperature changes within the chamber is thus

broken into two partsu. The gas in the zone upstream of the combustion front

is treated as a stagnant mass in which turbulent eddy velocities may exist s but

which has no net velocity along the chamber, Under such conditions of recircu-

ation mixia g should be sufficiently thorough as to warrant the assumption of

uniform temperature throughout the zone in which case the contribution to the

time rate of change of mass from this term will becomes

LJ.) KL
L5~ &t s t)it

I
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Neglecting heat transfer from the chamber walls, the oscillations in

pressure and temperature within this region may be considered isentropic, so

that: s

ors

T41 (28)

neglecting squares of small perburbations. Substitution of this function into

3quation 27 givesR

G LtTs CY..t 'r (29)

If# now, one specifies that the gas within this recirculation zone

remains stagnant$ then there can be no flow across the combustion frontj and

the position of this front will oscillate in such a way as to retain a constant

upstream mass. Therefore, the mass represented by the bracketed term of Equa-

tion 29 must remain constant with time and will be ecual to the mass under

average, or steady state, conditions when f = ! and = 0. Thus&

(f) L A (- f) (14o
o-~- j~/ Yo..g..( 4 ) LAC -~)(30)

ands

0 (3-1)

where squares of perturbations have again been neglected.

In the remainder of the chamber downstream of the front, temperature

is varying with distance as well as time because of the small fluctuations in

mixture ratio occurring at the combustion location, Each element of burned

gas produced at this location has its own particular temperature and entropy

determined by its mixture ratio at the time of burning. In the analysis of
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the exhaust flow term, it was pointed out that the entropy of such an element

remains constant as it progresses down the chamber at nearly constant velocity,

This constancy of entropy may be expressed mathematically by the use of the

"streamingg or lagrangian, derivative, which statest

D&. & E0 (32)

for which the faDliar traveling wave solution may be written, employing the

first law of thermodynamicsg

- t) -I
j A (33)

where the integral represents the time required for a particle to traverse the

distance from the burning station to the point ) , a time designated as 9

The form of the function g may be obtained from conditions at the burning station,

where the value of this integral is zero. Thusa

Ct) t) 2((AO -'F ) _ Cb)

3I CA (314)

From this expression, neglecting products and squares of perturbations, one

obtains:

T~~(x~t)' ebLW c

Returning to Equation 26, expressing the contributions of each of the

portions of the chamber to the overall rate of accumulation of gas and noting

that by assumption the mass within the recirculation zone is constant, one may

aubstitute the results of Equation 35 to derivet

L(1-f) LJ

c -9c- (1 (. (36 )I. 
Ar CX (6
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It is now expedient to introduce the condition of sinusoidal oscil-

lations in perturbed quantities, in which case all variables are written in

the general form:

(37)

so that the time and distance variables under the integral sign in Equation 36

may be separated$ yieldings [L
t)L 

(38)

For essentially constant gas velocity, 0 b is easily evaluated ass
, x- (1-F)L-

6h(O ti"-medpedn r t 
(39)

enab3±g one to perform the indicated integrations of Equation 38 to produce

the time-dependent relation&

L c-b

where use has been made of the definition of a gas residence time for the whole

chamber lengths

Carrying out the differentiations indicated, with the expression for

instantaneous location of the combustion front given by Aquation 31s the mass

accumulation term becomest

Ct)
./t ]
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Substituting the exponential form fort / 0 and AL.F and evaluating

these derivatives. again neglecting squares and products of perturbationss

gives the final expression for the mass accumulation terms Thus:

where evaluation of the exponential terms at their average values can be shown

to introduce only second order inaccuracies*

Substitution of the sinusoidal form for the oscillating quantities in

Equations 18 and 24 and subsequent replacement of these expressions into the

original mass balance relation as expressed by Equation 1 results in a complete

combustion chamber equation which,% after combining terms9 has the forms

-~ (w~)]4W [Qi~-t-<)At (/-H-)u.

Average values of the four essential parameters9 e.go., gas residence

times total combustion time lag. sensitive time lag. and interaction index

are thus exhibited in a relationship involving experimentally measurable steady

state and perturbed quantities,

A few additional modifications may be made to express the perturba-

tions in a more conventional form; thus. if one forms an instantaneous frac-

tional mixture ratio variations

combines the two steady state mixture ratio parameters in the forms

14t-2K-- -K
and defines the ratio of fractional variations in one propellant injection

rate to those of chamber pressure as the inverse transfer function of the
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rocket motor, expressed in a complex form as:

Lwtc

Then the final combustion chamber equation for the simplified model becomes:

Re 1

L (r1(L&W)k 5 (44

Limitations of such a "black-box" approach have been pointed out

earlier in the discussion. Their essential effect is to restrict the range of

validity of the final equation to very low frequencies of oscillation. The

following derivation, performed from a differential standpoint, represents a

more refined physical model and is applicable over a higher frequency ranges

This treatment parallels that of Crocco and Cheng in the high frequency, so-

called Ointrinsiom case of oscillations in chamber pressure with constant in-

Jection flows. However, the present work extends the previous theories to in-

clude the derivation of a combustion chamber equation in the presence of small

perturbations in both propellant flow rates. In a later step the frequency

of oscillation is extrapolated from values in the vicinity of acoustic modes

of vibration to a range an order of magnitude smaller and consistent with the

scope of artifically produced flow rate fluctuations.

This refined theoretical model embodies substantial gains in gener-

ality over the simplified model, although it still retains the encumbrance

of considering variations in instantaneous mixture ratio sufficiently small

so as to have negligible effects on combustion distribution time lags, and

the generation of reflected waves at the nozzle. The major innovations of

this model aret arbitrary distribution of the combustion process along the

length of the chamber; introduction of liquid droplet mass. velocity, and

*1/__
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energy into the conservation equations; and the incorporation of acoustic wave

travel considerations which admit the variation in both amplitude and phase

of pressure and velocity perturbations along the chamber.

Certain restraining assumptions are introduced in order that the

equations may be made amenable to reasonable analytical treatment, In addi-

tion to those of one-dimensionality and linearization of perturbations, the

refined model contains two simplifications concerning the motion of liquid

droplets in a streaming gas atmosphere. First. in describing the momentum of

these droplet,, a simple drag-type expression is employed in which an overall

coefficient exists inversely proportional to a Reynolds' number based on drop-

let diameter. Effects of evaporation on the droplet dynamics are neglected;

hence the droplet drag coefficient is considered constant. Second. the cmpli-

cated transfer of energy to and from the liquid as a result of drag, evapora-

tion, and thermal radiation and convection is treated by assuming that the loss

in droplet kinetic energy is balanced by the gain in thermal energy in such a

way that the stagnation enthalpyq per unit mass, of a particular droplet remains

constant until the total mass of this droplet has been transformed into burned

gas.

Operating under this framework of assumptions and following the

notation of Crocco and Cheng (1), the equations for one-dimensional motion

of the gas-liquid mixture within the combustion chamber may be written in a

non-dimensional form as:

Conservation of mass:

Conservation of momentum (neglecting wall friction):

atx 
(46

* i\
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Conservation of energy (neglecting wall heat transfer)t

Gas phase equation of state:

p -- T (48)

Droplet dynamics relation:

~2~A-Uk 3tA~k~L-t4')(49)
Droplet energy balance

at)
shp, =0(50)

The various quantities involved are defined by:

x = axial distance from injector face

t = dimensionless time

" density

u = velocity

w = rate of production of burned gas in the total volume

between the injector face (x = 0) and the station x

p , pressure

Y specific heat ratio of combustion gases (51)

a = internal energy

h onthalpy

T temperature

k droplet drag coefficient1

and the subscripts are to be interpreted as follows:

s = stagnation conditions

19 p = liquid propellant properties

Reference values chosen for non-dimensionalization are those of the

properties existing at the injector face., along with chamber length and the

speed of sound, co, at the injector face. Enthalpiea have been non-dimensionalized

/ -
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by the quantity T-1 1
C s, so that under the assumptions of constant

and Op throughout the variations of gas temperatures involved, one may

writes

CLh-cT a.nd Ah=.AT
(52)

AIao$, the quantityhp represents a common value of the internal energy and

enthalpy of the liquid phase, including the chemical energy of the propellants;

and in expressing the gas phase stagnation enthalpy, use has been made of the

energy-enthalpy relation in non-dimensional forms

~P

In steady flow all time derivations are suppressed, and correspond-

ing equations may be written subject to the boundary conditions at the in-

jeotors z = Os

Uur C 0)-01AO f ,uoa- ' hPO  (53)

here wi is the injection flow rate per unit cross-sectional area of the

chamber* These steady-state quantities, indicated by a superscript bar, are

related bye

(54S)

Rewriting Equation 56 with the help of Squation 52a

g- L (56a)

12,
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Employing this result, a relation between the steady-state burning rate and

gas velocity is obtained (using the perfect gas law) in the formg

Combustion will be restricted to the length of the chamber, with all

burning complete at x 1 i, the gas velocity having reached a final value ii, 0

From Equation 58, thens

*= ." 1+. .! '' ,'%('

Sufficient relationships now exist in Equations 5 through 59 so that

by specifying the distribution of steady gas velocity u (x) only7 the burning

rates temperature, pressure, density, and liquid velocity distributions may be

calculated for any given injection flow rate and droplet drag coefficient.

Before proceeding to the unsteady equations of motion, one may de-

termine some simplifying conditions from an analysis of the order of magni-

tude of the fundamental variables involved in the steady state framework, As

a result of the choice of reference quantities for non-dimensionalization, the

gas velocity il at the end of the chamber is very nearly the Mach number, M,

at that section and is therefore determined by the area ratio of the nozzle.

For all practical motors, excluding throatless varieties, the value of M at

the nozzle entrance is of the order 0.1; and this quantity may be used as an

order of magnitude reference to which all other quantities will be compared.

In such a range of values Ui is approximately equal to M and for combustion

gases in which the speed of sound is of the order of 3000 ft./sec., U1a will

be approximately 300 fto/seoo From these rough figures and from the droplet

dynamics Equation 57, one may deduce that within the scope of operational

injector designs, the liquid velocity, Up must also be at most of order M
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not only near injection but throughout the chamber. Figure 3 shows schemati-

oaly the variation in . to be expected from a typical B (x). The magnitude

of the drag coefficient k may be deduced if one considers the extreme case

0. Under such conditionsp the droplets would come to rest at some distance

down the chamber which may be called the 'penetration distancem of the droplets.

Taking half the chamber length as a safe estimate for this distance, the value

of k becomes 2 from Equation 57, which indicates that the actual range

of values of k must be of order M,

With this information in mind, one finds from Equations 55 through

59 that# correct to terms of order M29 indicated by the symbol 0(M2)8

and(6)

Alsos, from Equation 54

Therefore#

An additional approximation may be made in the droplet enthalpy

equation. So little information is available concerning the interaction be-

tween droplet velocity, droplet diameter, evaporations and the combustion

process in a two-phase system that the effects of non=uniformities of droplet

size and perturbations of injection velocity on the droplet energy balance will

be neglected, and the liquid stagnation enthalpy will be considered constant

throughout the flow field. Thuss

k~+1:.t1Iin constant (2

Proceeding now to the derivation of perturbation equations, one

treats each physical variable as the sum of a steady state component and a

linear perturbation, sufficiently small so as to make terms of second or higher
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order in these perturbations negligible. Considering only neutral oscillations

and indicating perturbations by a superscript prime, one may writes

I. I - ' £LAD'~ we(63)

where s ioj

Replacing the instantaneous values of Equations 45 and 46 with their

linearized forms subtraoting the steady state equations$ and introduoing the

notation of Equation 6.1 one obtainst

Y+IZ (64)

(65)

The droplet energy Equations 47, 6, and 62, combine to gives

at T (66)

where the value of hs' =h' + (-1 )Z4I =)U + (1-1 )Z (67)

However:

T= P-'T f from the equation of state#

Bs

4C 9 from which Equation 66 becomes:

-!TV oe -) 74(68)

The droplet motion Equation 49 becomes:

& k) = kv (69)

</.-
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Boundary conditions at the injector end of the chamber ( x 0 ) are

as followst

(a) u(Ot) = ao = U'O  -O y (0) =0Ofor allt.

(b) Since no burning has yet occurredp ,Co)-u=- 'C o)a O0

(a) For constant liquid bulk density A in the injector passages8

* JO (70)

where Ai and A. represent the areas of the total injector ports and

the chambero respectivelyo '

~Thens

At the nozzle end of the chamber ( x mi )O burning is complete andR

Z .±t)O (71)

Five ordinary linear differential equations9 e.g., 64, 6, 67, 68,

have thus been derived for the six perturbations, 4) "57 /$l '

A sixth relation will be furnished by the burning rate equation in which the

important time lag parameters are introduced* However, before proceeding to

this final derivation the existing equations are put into a form suitable for

iterative solution by combining the variables into groups defined as fol.owss

(--1 TU +-1)

TM Y4 -2 rh -T)J~ 1  g_

N

S_(72
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where all perturbed quantities are compared to a reference value of the pressure

fluctuations at the injectoro In terms of these grouped variables, Equations

64 and 65 become:

(73)

Iiioh can be rewritten, with the addition of two new combined terms, 3 and F,

in the more nearly symmetrical forms

qY)±5( T)z 4-)5 (74k)

Treating I and F as if they were known functions of x, these equations

ae integrated directly to gives

A.-)I C15 h 5)YQC+t h S I(ItS6 h(

The constants 01 and C2 are determined by evaluation of the various

quantities at the injector boundaryp where these conditions are given by

Equation 70. Substituting these values into Equation 75 givess

& "(76)

000

)
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The additional relation between q(x) and the other variables arises

from the burning rate equationp which is based upon the combustion time lag

concepts discussed earlier. Consider the fraction of injected propellants

burning in steady state between stations T and i + dix. Call this fraction

and assume that the time lag 'T X) which this fraction ex-

perienced in reaching F is the same for all particles or elements within the

fraction 6 although it may differ for different fractions burning at

stations other than r. This fraction, then, was injected at time (t-'-- )
as a fraction of the injector mass flow rate

In the unsteady case, define a new fraction of injection mass flow

rate# such that is the same geometrical fraction ofrYyL as

W is off Thus, the fraction of unsteady flow rate and the fraction

of steady flow rate are considered as existing at geometrically similar positions

within corresponding propellant streams in the injection pattern. This fraction

now experiences a time lag -T (x) (in general different from T T)3

and finally burns between stations x and x + dx, producing a fractional burning

rate Pv% b

Having defined the relationship between and C'ML one must

then express some relation between tT (X and ". L.) For this pur-

pose suppose that chamber and throat geometry are instantaneously varied in

such a way that during the combustion of 64nL the steady-state thermodynamic

conditions exist, ioeo, p Pp T - T, etc. Then (which is shielded by

other propellant elements in the same way as X and which experiences the

same break-up of droplets and jet-apreading from hydraulic influences as

does is flowing through a gas atmosphere in the same thermodynamic

state as that through which , flowed. The final transformation of

propellant elements into hot gases can only take place after these elements

have reached a well-determined energy levelp Za3 and the time required to
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reach this level depends directly on the rates at which the energy transfer

processes take place. These rates are primarily functions of pressure,

temperature, mixture ratio, and relative velocities between fluid particles

and gas. Since the relative velocity (uR - u) is determined by the burning

rate distribution itself (which produces u), its variation with changes in

injection flow rate will probably be a second order quantity. Therefore,

postulating constant mixture ratio even with varying injection flow, the rates

of energy transfer to the droplets are all approximately the same for (Vl 6as

for F in. under the aforesaid hypothetical restriction of the same pressure

and temperature in the two cases. This implies that under similar conditions

the time required to transform the droplets into hot gases will be the same
for as for T . That is,tT (x)- (3t). It must be

emphasized that even under these imposed conditions of similarity, x will not

in general be equal to 2 . Thus, if the velocity up of the droplets in

is greater or less than the velocity U), of the droplets in

, the station x at which they burn will be correspondingly

greater or less than 3, since the same time elapsed in both cases.

This assumption can be expressed mathematically by saying:

when:

and, (both quantitatively and geometrically)

then: 1T 45T (1T

where: Fy burns at station x, and (77)

and., in general: X

Proceeding to the derivation of a relation for q(x) from w(x,t)

and 9 (x), one obtains from the definition of 1 (R) as the rate of gas

generation in all the volume between x = 0 and x Xr X
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67 C (78)

Similarly:

However, - b is the fraction of propellants injected at time

(t (- 7 C() ), hence:

Now, - bCt) was injected as C- L at time (t- T ); but the

short interval of time dt during which burns is not, in general,

equal to the interval of time in which -A 4 , was injected. Rather, as

shown previously in Equation 12:

(80)

or:

Then, from the definition of d- , of Jquations 77:

or, substituting:

',b +3 -CL L(*- (81)

which, employing the relations of Equations 78, becomes:

urcy., CL x= CL0-C) C -'L, - -x&_. (82)
I t

In order to integrate both sides of this equation over the same total mass of

propellants, one must integrate the right side over those fractions uhich burn
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in steady-state between 0 and x and the left side over those fractions burning

in unsteady-state between 0 and x (xt), noting that Z (0) = w (O.,t) = 0 for

all fractions. Then:

~ ~)OLX' &x00L -L ' bc (83)

From the time lag assumptions previously expressed by Equation l4

-11 P c(11) - CX' ltt 2 84
Ot T

Were (x) is the station at which an element burning in steady state at

begins the portion of its time lag which is sensitive to chamber conditions.

Frwn this definition " and ) are related by:

Now since w (xpt) w (x) ' w! (xt) Equation 83 becomess

03, where t is the time when

the elment was at station xh b

That is:

It
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However, since -C constant_

0 0

Neg3ecting higher order terms1 since - :I 1

-1

Then$ Equation 88 becomest

xA

o (89)
FI

In the unsteady case, Equation 2 representing transfer of energy to

the propellants by a rate function f , is expressed as:

rr

where: ct = 74 in the unsteady case.

The function may be written as in Equation 41

Pn -" P (X!, t(91)

where use has been made of Aquation 60 for evaluation of Splitting the

integration of Equation 90 from to i into three parts and neglecting

higher order terms, one obtains, as beforet

A N') tCYc

so that after substitution of Equation 89, Equation 90 becomes:

I
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from which the desired relation is derivedt

(r) ,, , n
{ X±') 'a.2 (93)

The first term in Equation 93 represents a shift in the instantaneous

burning station due to a change in droplet velocity from that experienced in

steady7 state., and the second term is the contribution of a changing time lag

arising from fluctuations of the pressure around its steady value, onsidering

only tems of first order in the perturbations.. one can evaluate the integrals

in Equation 93 at and instead ofatz ad Also, to thisorder

of approximations

OL X (94)

Substituting for (x - ) from Equation 93 replacing by its equiva-

lent (from Equation 60) and inserting these terms plus the value of

o Equation 3 at e nn

inrto e Eution 86 gis rltdttb heeuto

no (95)

where the time t' is related to t by the equation

-I x".__" =t",X
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vhLOh Ian*. be. approximated byt

t'5 t __ (96) K

since it is

only used in computations of the perturbations*

The expression for wl (xpt) given in Equation 95 consists of a first

term due to time variations in the local burning rate, a term due to the vari-

ation in injection flow rate, and two terms due to the variation in locality

of the burning station, one contributed by time lag variations and the other

by a kinematic displacement, ie., a change in penetrationu of the droplets.

In terms of the transformed perturbation variables of Equation 63P

for exponential oscillations, this burning rate equation issCI %
(97)

The required six equations in terms of the six perturbation variables

have now been derived* Substitution and evaluation of the combined unknowns

Y(x), T(x), E(x), and F(x), must be accomplished in order to reduce Equation

76 to a pair of simultaneous equations in two unknowns. 
The first step in

this process might logically be solution of the droplet dynamics relation.

This linear differential Equation 69 may be rewritten in the forms

(CLYJt Ca k-Y(98)

utiplying both sides of the equation by an integrating 
factor,

I.
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the left-hand side becomes an exact differential; and the equation is inmedi-

ately integrable. The boundary condition expressing oscillation of injector

flow rates is simplys at x = O 7. 70 s Rt,

from which the solution of Equation 98 ist

Substituting this result into Equation 97, making use of the defini-

tion of average total time lag of a particle burning at location x , namely.
r

IT C Y,) Di

o~~O 'A o

whe re

X

is a quantity directly related to the pressure sensitivity of the burning

rates ands

0
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is a term involving the effects of droplet drag on the oscillation in burning

station of a propellant elements

A number of terms in the burning rate equation as well as in the com-

bined Equations 76 become considerably simplified if one performs an order of

magnitude analysis on the quantities contained therein.

For this purpose, it is assumed that steady state combustion is suf- 10,

fibienty distributed so that maximum local values of 4Y are of order unityj

that the dimensional sensitive time lag, = , is of the order of the wave

propagation time, hence - is of order unity; and, furthermore, thatI

-- - 0(1) (103)

For Cx)-OC() Equation 85 shows:

ort =:(. )

The pressure oscillation at a particular burning station, x ,

can differ from that at the beginning of the corresponding sensitive time lag

by a quantity at most of 0 (M), since (by virtue of IJ)t

or$ L 11 (104)

Insertion of this relation into Equation 10. then givesn

1 ( \Crocco (1) has shown this to be true for moderate d.) when is not too large. )
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For the neutral oscillation condition specified, where s = iWe,

e OoL- 7a C X'

Hence, because LU - integrates to a quantity of O(M), the second integral

in 105 is of O(M2 ) and may be neglected, givingzL ~)ci~~.'-oI~4(106)QoL

A similar simplification is applied to the third term of Equation 100.

In this term, the variable of integrationj x' lieu between x and (x). Thent

ands lies) + x a9

from which the term in question is written:

zCj- k*-) 04p J

The first portion of this integration may be performed directly; and for the

purpose of order of magnitude determination a proper mean value of the inte-

grand will be removed from the integral, yielding:

r (107)

X ) 1pXI~ *j.I(-~
it d,)(
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The barred, bracketed quantity represents the mean value chosen and is of 0 (J./M).

Since the exponential interior integral is at most of 0(1), the maxLmum value

of the second term of 107 is:

which, from Equation 103 and the discussion imieiately following it, is of

o(H2). Thus,

-'f~L ~ ~ W (108)

The order of magnitude of injection velocity perturbations is deter-

mined by the size of mass flow oscillations as follows:

so that: i Ci. 0 -X f )Ar.

or, if:, then the fractional

perturbation of injected mass flow becomes:

However, from Equations 70, Hece
O -00Hencet

(109)

The actual magnitude of mass flow fluctuations in the injected streams is ar-

bitrary, since these are to be artifically produced in the laboratory. In the

present program, the fractional flow rate oscillations will be limited to the

same order of magnitude as the fractional pressure perturbations. Thent

I



or, since (ii0)
-# : 1i-oU1") 'bL.0 oCI),

and:

An inspection of Equation 102 shows that the droplet drag integral

D(x) = O(I/M3), so that the final term of Equation 100 is of 0(l).

Combining the results of Equations 104 through 110, the burning

rate equation becomes:

Air h

- 5Cr ) C) c-x' Vax' .i) E~ a
Jo JoT ,

where a

and D(x) is given by Equation 102.

The order of magnitude of the first two terms and the initial

expression within the brackets is O(M); the second contribution inside the

brackets is 0(l); and the final expression is of an order not yet determined,

but which is shown by inspection to be not greater than O(I/M).

The order of magnitude analysis may now be extended to treat the

combined variables Z(x) and F(x) appearing in the two basic Iquations 76. From

the definitions in Lquations 72 and 74 and the order of magnitude assumptions

and determinations of the preceding pages, these may be writtens
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For the case of neutral oscillations of moderate frequencies,

s = iw= 0(i), the final terms in Jkquations 76 are of the form:

so that the orders of magnitude of the unknowns will be analyzed in this

integral context. The initial quantity of interest is, thent

J

which is broken up into five contributing terms by Equation .11, The first

of these is:

The interior integral produces an expression of maximum O(M); and

for n of 0(i), as may be expected for most of the physical processes

involved, the entire term is of O(M). The second term is also O(iI±),

appearing in the form:

'(0 e I + c" J e L14L 'C & , (l.$)

The third term becomes:

j 7L ' SLJI
(x()1- 16
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since the maximum value of both exponential terms appearing in the in=tegrand is

1.0o

The fourth term of this burning rate contribution is:

Here DCx ) = (1/M3),) = 0(M)=, 4 O(M2), and the

maximum value of the exponential factor is again 1,0. Therefore:

where the maximum value of the first three factors of the integrand has been
removed from beneath the integral for the purpose of order of magnitude

evaluation*

The final term will be retained in its original form for the

present# resulting in: V

which is at most of O(M), depending upon the integrated value of

Collecting all the terms from the burning rate relation as

expressed by Equations 114 through 118, one obtains:

i $

0 0

r a K -y) ()) Aq(NO
14 L c

(A0(

*(119

.................... (K
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The next term of Equation 112 to be evaluated ist

Rewriting Equation 68, neglecting terms of O(X2 ):

Multiplying by the factors W (x and integrating givest

Therefore, the last two terms are of O(M2 ), since integration produces at most '

the product of 12 (x) times a quantity of 0(1). Then

' - d(W() b(-A_,A)___ x-Y

L ~ ]e &Ku-~ ~(120)

00

The third term of F(x) contributes an integral expression of the
forms

t- d5 (Y- -

Substituting for the perturbation from Equation 99, this

contribution becomes:

C ( j~~~~~i)~~i -\~kT'() ~ c~ J6')
£I

e d~~e ~-~~'r('i'
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SinceJ ( ) = 0(i) by Fquation 61. and since the drag coefficient, k, is always

positive$

Therefore:

U--
S 0

From Equation 103,= 0(l) , and the first term of 121 is at most of O(M).

The second term, based on Equation 110, is of 0(M2 ); and the resulting expression

may be uitteno

The final term contributing to the integrated form of F(x) ist

The order of magnitude of the perturbation variable Q')/<o is

determined from the right-hand side of Equation 64., rewritten as:

r4

Direct integration of this differential equation subject to the

boundary condition (0). 0 * produces the resultt

A
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ors.Y

0E o- L (

The order of magnitude of is found from the left-hand side

of Equation 64 to be:

~-L- Syt (W)S

where the magnitude of the final term is determined from Equation 68 as 0(l).

Then$ by virtue of Equation 1 03 all terms in the expression for

and the contribution of the first integral of Equation 123 is ON(),

The value of the second integral in this equation is obtained from

an integration by parts of 99. Thuss

( 124)( )-

In this relation, all terms are of O(M), for moderate values of a ; hence the

second integral of 123 will also be O() Thens

0U (M) Pare tct

and: 4i
(125)

With this order of magnitude in mind, Equation 64 will be multiplied

N
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by Y iA- and integrated to gives

1* -

.r (126)

*0 J
0 o

With the orders of magnitude of both OW )4 and~q A(,X) t ) 0

given by Equations 124 and 125 as O(M)p integration by parts of the last two

terms in 126 indicates their contributions vlil be 0(M2) and may be neglected*

8iml"iarlj, any terms of 0(M) contributing to ( will produce negligibly

small terms when integrated as a part of the first term of 126. Rmploying

Equation 1Il and retaining only terme of 0(I)s one obtains:

JeoCAc ILK~ ~) tA+

An examination of Equation 319 shows thatt

so that the final integration of 1.27 will produce only terms of 0(M2).

Thew:

(128)

and is of 0(M) for all moderate values of s

Collecting all the terms contributing to F(x) from Equations 114
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through 125, one writes: s~I

.Q~rYe Y5 ~ l e I ) '-

0 io

00
________-_Qw ax,~' e.)e( ("j 4 ) 4 li -

e. .) Z) (, 'I O: QA) VT (19

where all terms have been shown to be of 0(M) when integrated.

The corresponding evaluation of

0

is considerably simplified by employing the results obtained for order of

,magniude of the termer (X "  "AND ,,., both of which

reof 0O(M).

Thus, Equation 113 becomes:

Then:

t 4,() ,( -A,

of (130)

All the terms in the original complex set of Bquations 76 have now

been examined for their orders of magnitude and have been related to two

primary perturbation variabnes-, and
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* Now noting that b re It

" " T' tj- (y 4'€'(xy ("A):.s~ (,A)... ,)&, -'

Y( A -- Q' ) . J

Equations 76 become
rSA& -P'(

~F

Solution o7 Iteration fo Small co

Since the integralit Equations 132 are not amenable to direct analytical

solution, a procedure is adopted in which successive iterations are performed,

each including terms of a smaller order of magnitude than the preceding one.

Considering terms of order M42 negligibly small, two iteration steps are

requireds the first including only terms of order 1.0 and the seconds

terms of order 24 Thu

(133)

Because the results of these equations are to be applied to

mechanically-produced oscillations of low frequencies, it is necessary to

examine the contributions or the various terms of 0(l) and O(N for the

case of small CA .Thus, if Li) (2)s then all terms of 0( k() M) or
O( L 2) become negligibly small in keeping with the assumptions to date.

\

/,,...... . . ""/ . . . . . .



For this range of frequencies8

from which the zeroth iteration of Equation 133 may be expressed as:

where the superscript zero indicates the order of the iteration, and only

terms of O( 1) have been included.

Substituting possible 0(l) terms from Equation 111 for the meroth

iteration of % /c0 p the second of the above equations becomesj

@ -r-W ,(y 2i- -IC Q tT .-' TT (1

"0 0 ( 35)

Wieret

Two new integral values may be defined byR

ands

by whose substitution Equation 135 is reduced to a second order differential

equation in JV (x), the solution of which yields, the result:

OP "P d~x(136)

The details of this solution are given in Appendix B.

This result furnishes some very useful information for additional

order of magnitude evaluations. The presence of the factor , which may

d~x
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be of 0(I)p shows that although may locally be of 0(l), it can only

remain of that order for a short distance and will be of O(M) when integrated

over any portion of the chamber. (This variation is schematically indicated

by Figure 4). As Equation 134 indicates, the same conclusions may be drawn for

the burning rate perturbation

The only remaining term whose order of magnitude may be increased by

CA.) = O(M) is u / , which, from Equation 123 will be expressed as:

7 4- *o doJ°L (137)

This result shows that in the evaluation of T(x) and Y(x). the quantityu, 40-

must be considered of 0(l) because of the presence of the term j w

However, the contribution to

of this term will be negligible, since the largest integral involved will be:

0

An inspection of the remaining terms in Equations 129 and 130

indicate that, for L) - O(M),

-( 1 ' la '-o(o ), o~ )=f" b {Q'e- 5 ( - ' a

0 0

From this expression, the first order iterations for Equations 133o containing

terms of 0(M) and larger becomea

_ (138)

I,\

N

/I
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wheres Uc

N - (139)
The value ofi , correct to terms of O(M) will be, from Ill:

L wti d(,*a.E 00® 'LVT 5
]-q1

Substituting the values for and from Aquationh 134 and 136 gives:

1 6) 'my V] __ -r x

0 0

The first term of this equation may be integrated by parts. Perform-

ing this integration and ne lecting terms of 0(0 M), one obtainst

With this result, Bluations~ 139 are evaluated as:

0-

j , , (340
-ig ot jL T ) ki -rA)-rt Qo _

I,

Cie

_e~w*(x YnoL60e-r~') kla00 C ZA(X) we c!



Substituting for and combining terms one derivest

~ -I-& (.A) eLU-tT (,Y

n fY - P.

r~Ji

e sodta d t

One additional simplification may profitably be made by expanding

the scond term of 1 )and the third term of Y-(*x Thust

L W

since t x) has been assumed of order 1.0. Theng the second term of% T WCx)

is of O(M2 ), and the third term of rY(1)( ) becomeue

G c C OS - .) Q l..d(L

Introducing this change into 1 and substituting the resulting two

equations into ,3 one arrives at the final values of the perturbation quan-

tities correct to terms of O(M);

Ch a

-J
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I.
The pressure and velocity perturbations represented by these two

equations are related through the boundary conditions at the nozzle entrance.

For a conical geometry in the subsonic portion of the exhaust nozzle, the

derivation of Appendix A shows that the variations in pressure, velocity, and

entropy at the entrance section may be expressed in the form:

N ' L0 J LW

there the subscript M denotes properties evaluated at the entrance section

and N indicates that non-dimensionalization is based on nozzle reference

parameters. Comparison of the two non-dimensionalizing procedures leads to

the following conversion from nozzle to chamber variabless

IL
N C4

The frequency of oscillation, expressed in terms- of chamber parameters,

becomess

wheres

length of the subsonic portion of the nozzle.

Ct  = velocity of sound at the nozzle throat.

The integrated nozzle velocity parameterss

are defined in Appendix A and are functions only of the nozzle geometry.

i \.
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Introducing Equations 145 and 16 into Equation i144 and definingt

w AJ1*

one obtains for the nozzle boundary equation the following:

The entropy perturbation _ (x) is derived from Equation 68, re-

witten in the forit
S d____ (IV.L ____

Integrating this linear differential equation and retaining terms

of O(M) and greater gives:

Substitution of the expressions for C') and from Equations 136

and 1:42 into 148 producess

- t L (-A) "'

or, after integrating the final term in the brackets by parts.

6 11:k L LsT (-A
CPO (.A)

ILI (149)
o L (*)a,+ , '.,

The three thermodynamic properties must be evaluated at the nozzle

entrance before insertion in the boundary equation. This evaluation is con-. \

_ _.

/ ______
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siderably simplified by the condition that all combustion must be complete

within the chamber. Then, at x = I,

so that Equations 142 243, and 149 reduce tot

4(15o)

rA QI
biherion ga prooe atsainzt ec tenii nrne

is a gas residence parameter deqoting the time required for a particle of cox-
bustion gas produced at station'x to reach the nozzle entrance*

The three relations 1 are introduced into the boundary condition

Equation a3j7, yielding:

)COSW* d Y1

as a combustion chamber equation for the refined theoretical model*

The initial velocity fluctuation is transformed into the form of

a transfer function for the injector-chamber combination (as in the simplified

model derivation) by noting thatt

'Ii

fk\
At I'L

ool L S
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which is the amplitude of the fractional injection mass flow perturbation as

defined for the simplified model. Also:

~L

is the amplitude of fractional chamber pressure oscillation at the injector

face with a phase angle indicating a time based on the fuel injection pertur-

bation. In the simplified model, the pressure is assumed uniform over the

entire chamber. Thus, in terms of amplitude at an average position, x

(l53)

Then, from )52 and 153,

or, employing the mixture ratio parameters defined previously in the derivations

of Equations 17 and 34t

, Z ,. vi A- +- C<- Cw;e e
LA (262)

Replacing the term in Equation 151 by its modified form as expressed

in 154 results in a combustion chamber equation as followsg

4z' 1t
COX~ S W-

U. W) ('A( r

wI
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In keeping with the assumptions of small W and consistent with the

neglect, heretofore, of terms of order W 2 and u M, a further simplification

may be made. The factors coo cJ and cos w0 x may be expanded in series form

to yieldo

4
since x 4 o(1).

Thus, the variation in amplitude of pressure perturbations along the

length of the chamber-is seen to be negligibly small when the frequency of

oscillation is of O(M), and cos ) and cos(Z x may be replaced everywhere

by 1.0 to the order of accuracy considered.

oT of the time lag parameterst (x) and (x), appearing in the

combustion chamber equation may be calculated from velocity distributions.

However, the distributed sensitive time lag, t (x), is totally undetermined,

since the position ( (x) where a particle enters the sensitive portion of its

prepazation processes is a completely unknown and somewhat artificial quantity.

Hence it will be considered sufficient to determine a mean value of this sensi-

tive time lag, and the exponential factor e7 L may be represented

by a proper average and removed from beneath the integral in the third term of

Equation 151. Thus, if one defines an average (x) byt

a +(156)

then a series expansion of the integral expression containing (x) shows

that:

J.AY$) ckVk() C C4 .Lt

o(157)



I.Now as previously postulated,

thens I )
€- . ~) aC., 1q ,.. AV_.( I )

Correspondingly, an exponential variation involving the average time
lag may be ritten asV

(159)

Hence# correct to terms of order (O) one may equate the expressions

in Equations 158 and 159 to yields

L04

where the averaging process for is given by Equation 156.

These simplifications result-in a final combustion chamber equation

for the refined theoretical model of the form*

1) Qvzi VA) d,,

Y\S

7' ('- ~(161)

Comparison of Equations

The final combustion chambea-equations from both simplified (Equa-

tion W and refined (Equation 161) theoretical models are presented in Figure

5 in a form slightly modified for comparison purposes. The general corres-



-- . . . .---.---

65.

pondence of terms is immediately evident.

The left-hand side of both equations consists of the product of the

chamber transfer functioii times a phase-shifting total time lag exponential

factor. In the simplified modelp since all combustion is assumed to occur in

a concentrated location, this exponential factor is a constant.,tT , repre-

senting the mean time required by the droplets to reach the combustion front.

In the refined model the exponential is an integrated function of the distributed

steady-state time lag variable , (x) weighted by the steady gas velocity ;(x),

which is equivalent to the combustion distribution.

The right-hand side of each equation has been written in fractional

form with all mixture ratio parameters included in the denominator. If the

fuel and oxidizer flow rates oscillate in phase and with equal amplitudes,

there will be no fluctuations of instantaneous mixture ratio, and the denominators

of both equations reduce to unity. In the refined model no attempt has been made

to account for effects of mixture ratio variations on the combustion process.

Therefore1 only the injection mass flow oscillations contribute to the denomi-

nator. The simplified model, however, contains two additional quantitiesewhich

are the result of considerations of gross mixture ratio effects on the tempera-

ture and density of chamber gases. These terms are identified by the presence

of K, a factor correlating mixture ratio and chamber gas temperature. The

quantity with exponential time reduction ( ) is the contribution from

temperature oscillations at the nozzle entrance referred to mixture ratio fluctu-

ations which existed at burning. a time 4 earlier; and the constant term

2K is the temperature contribution at the burning station to oscillations of

gas density within the chamber.

In the refined model such gross effects would be inconsistent with

the distributed form derived for pressure, velocity, and density perturbations;

and it would be necessary to postulate some interaction between mixture ratio

t \~

S-'~- a
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and the combustion process in order to express these effects in the functional

character desired for a differential treatment. Scala (7) has performed such

an analysis by introducing two, additional interaction indices relating mixture

ratio variations to variations in combustion time lag and in energy required

for the propellant preparation processes. However# analytical solution of the

complex combustion chamber equation resulting from incorporation of these un-

known indices requires additional knowledge of the time lag or interaction

function expressed in the present treatment0

The numerators of the right-hand sides of the two equations in Figure

5 contain terms which show direct correspondence. Under the non-dimensional-

ising scheme of the refined analysis, ( 1 , ) is precisely the gas residence

time if the velocity of all particles is Uj ; and since variations in steady-

state gas density are of O(M2), this fraction is equivalent to the quantity 1g

as defined for the simplified model, correct to terms of a negligibly sma.l

order*

The second term in each numerator arises from the contributions of

pressure oscillations to the fluctuations of the mass of gas within the chamber.

The third term originates from the Onozzle impedance" analysis and

represents the phase shift caused by the presence of the exhaust nozzle on

pressure perturbations at its entrance.

Similarly, the fourth term arises from variations in entropy at the

nozzle entrance produced by pressure perturbations occurring during combustion.

Thus, an exponential time-depressing factor multiplies this term in each equa-

tion. In the simplified model, this factor is merely f 0 , the time required

for a particle at constant velocity, L. to travel the distance from the com-

bustion front to the nozzle. In the refined models the exponential is again

an integrated quantity weighted by the steady combustion distribution.

The final term in the nuerator of each is the expression of pressure

!ii
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effects upon the sensitive combustion time lag, and here the correspondence

between models is exact, by virtue of the averaging process defined for the

refined models

A final comparison check on the two models is possible by considering

the velocity ;(x) in the refined model as a step function of zero magnitude

from x = 0 to x - ,and of constant magnitude i for the remainder of

chamber length. Under these conditions, except for the mixture ratio variations

discussed earlier, the two models reduce to exactly the same equation.

Combined Theoretical Model

Bach of the combustion chamber equations of the previous derivations

'has certain advantages when applied to experimental data for the purpose of

obtaining reliable time lag information. One method of evaluating these advan-

tages is by analysis of the measurable and unknown quantities in both and compari-

son of the relative difficulties of obtaining values for each.

The primary unknown quantities of both equations are the average sensi-

tive time lag and the interaction index, i.e.TAV.and n. These two variables

occur in the same form, regardless of the choice of equation. However, they are,

in essence, the only items appearing in the refined analysis which are totally

undetermined, while the simplified analysis contains three other quantities which

are either unknown or sufficiently in doubt as to require treatment as unknowns,

These are the mean total time lag, , the gas residence time 0 g , and the

location of the combustion front, - This implies that solution of the

refined model may be accomplished by direct analytical methods; but the simpli-

fied model requires approximate, iterative, or asymptotic solution. (The actual >
methods employed for treatment of the simplified equation include an asymptotic

one which is explained later in some detail.) However, the direct solution of

the refined equation involves the use of intermediate, derived quantities whose



68.

determination from fundamental measurements may be cumbersome and of question-

able accuracy. Hence, the apparent advantage of direct analytical solution

is somewhat misleading in this case.

The primary measured quantity in either equation is the transfer

function parameter, F , whose evaluation is totally independent of the

physical model chosen to describe the combustion process, Since measurements

of oxidizer and fuel flow oscillations are obtained simultaneously# the transfer

function may be based upon either propellantj and comparison of the two fluctua-

tions then results in a second parameterg the instantaneous mixture ratioA/t A

which is required in both equations.

The major disadvantages in solution of the refined equation appear

through another experimental measurement which enters in a prominent manner,

namely the steady-state gas velocity distribution along the length of the rocket

chambers This is an extremely difficult quantity to determine with any reason-

able degree of aocuracys since it depends upon a pressure difference which, for

the usual contraction ratios of practical motors, is at most of the order of a

few percent of nominal chamber pressures Once this velocity distribution is

knowns it must be used in a numerical integration to determine g(x) and 1 (x).

The latter also necessitates the choice of a droplet drag coefficients the

value of which is$ at best, an extrapolation of existing data from separate

experimental work dealing with injection sprays, droplet dispersion or single

droplet studies under conditions which may be quite dissimilar from those en-

countered in the particular motor under consideration. This derived liquid

velocity, as determined from the droplet dynamics equation in steady state, is

then involved in a second numerical integration to obtain the distributed total

time lagitT (x). Finally the three derived variables i, Qg, and;t-1  are intro-

duced into two further numerical integrations to evaluate the exponential factors

appearing in the refined equations Thus it is seen that a combination of five

/•
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numerical integrations from data of a rather poor degree of precision are re-

quired before an analytical solution of the final refined equation can be per-

formed.

Considerations of this sort indicate the desirability of combining

some of the best features of each analysis into a composite equation for the

combustion chambero This combined relation is derived based on the format of

the simplified model, with correction terms obtained from the refined model.

Small variations in instantaneous mixture ratic of O(M) are permitted and

are included in the same manner as in the simplified equation. The secondary

unknoiis e g, and f are introduced as exponential functions of average

values, with the averaging process again defined by the steady-state velocity

distribution, as in the refined model, through the determination of liquid

velocity and a distributed total time lag. However, these relatively inaccurate

distributions are applied only as correction terms to the average value employed

for T-T and F c . Hence their uncertainties are much less pronounced in

the final equation, since errors in the measurement of U(x) and the choice of

a drag coefficient k are of first order in the corrections only, not in the

exponential terms themselves. These distributions also furnish a basis for the

initial choice of the average space lag (1--?) as well as a check on the final

iterated value of this parameter. Thus, the refined model contributes correc-

tions to account, at least in part, for the two major limitations of the

simplified model, namely, restriction to very low frequencies of oscillation

and discontinuous representation of combustion distribution.

Under this framework of revisions, the combustion chamber equation

is rewritten in the forms

tW__' (162)

--
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where the time lag parameters and TT ,as well as the space lag

parameter; q , appear as average values, in the manner of the simplified

model* Correction factors F(4.,u) and G(LDu) have been introduced in func-

tional form to indicate that these corrections are based upon frequency con-

siderations and upon actual combustion distribution.

The average sensitive time lag, t avg., has been defined in Equation

156 from the integral form of the refined model, weighted by the combustion

distribution (or gas velocity), (x). The same procedure may be followed to

define an average total time lag ast

K ~T~G~Lo(n (2163)

The correction function F( ,u) must now be derived to equate (to

terms of O(M2 ) ) the exponential factor involving this average time lag to the

integral expression of th,1 refined modelo Thus:
F LO "q ) e (16)4)

As in the derivation of Equations 157 to 160, one may expand both

sides of A in a power series, yieldingi
F(,) - -v C \ 4 .

' . .--_ 4p

i-Lolr-,+I [AVAG 165)

LW ~ ___ CA4(4

OF

where use has been made of the definition of Equation 163.

This total time lag results from the integration of / W(x), and

hence must be considered of order I/M. Therefore, ( ) and&)T (x)

may both be of 0(1); and the expansion of these may furnish contributions of

O(M) for terms as high as the third power of the variable. Terms in the fourth

power of) are reduced sufficiently by the factorial divisor as to



(1 71.

be considered negligible. Thust

With this in mind, one may specify the form of the correction function

F( () ,u) also as a series expansion including terms of the third power in

frequency, i.e.,
F L vo

ihere &, i  and L will show the dependence of the correction functions

on velocity distributions* Rewriting Equation 165 then givess

" rLG + 'v (m (367)

Expanding this equatio and equating the coefficients of like powers

Of in a direct tero-by-term comparison produces the following expressions

for the correction factors& r f

(168)

where the higher power averages are arbitrarily defined from the relations

For evaluation of these correction terms, it is necessary to return

to the original definition oft~-( (-x) and perform the integrations nm~erically.

These calculations are considerably simplified if one integrates the terms in

168 by parts, substituting relations from the steady-state droplet dynamics

equation (57) wherever necessary. Performing this analysis givess

7/' I) '\
I 7,
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~(169)

andt

k ti' ,( T k. -tkt.

where, as previously defined,

Because this form of correction term is easily applied to the com-

bustion chamber equation and is not too difficult to evaluate nunericallyg

it would be desirable to express the integral containing gas residence time in

a similar series expansion, Howeverp by definition,

and because the steady gas velocity must reduce to zero at the injector face,,

the gas residence time of a particle burning at this position (x = 0) will be

infinite. For all realistic distributions of combustion in the presence of

some finite time lag., the velocity ri(m) approaches zero at this point as a

flat curve,9 i~e.s with small slope; and inspection of the integrated Qg(X)

shows that if the approach of the function is in the manner of a polynomial

of first order or larger, this factor becomes infinitely large. Then., a

series expansion of the forms

k •

(D- "

considered as a function of sl) yg has an essential singularity in the derivatives

at WJ - O)

Beauethsfom fcorotontrmi eas...pp.e.t.th.crn



73.

For this reason it is impossible to express correction terms for this vari-

able in the same power series form as was done for theT, (x) integral.

However, for certain discrete forms of the velocity distribution i(x)s it is

possible to evaluate the integral expression directly, without recourse to a

series expansion. In particular, if 7(x) is made up of a number of straight

line segments with ) zero at the injector face, such thatt

- .o x " , x Y' (171)Co Ck Y. b Y,. .. ,g, t . r

then the integrals

(172)

may be evaluated as the sum of integrals over each defined range of linear u(x).

Such a scheme may be used conveniently as an approximation to the actual velocity

distribution. The degree of refinement desired will certainly direct the choice

of the number of straight-line segments used to form the approximation; however,

in most oases it should be sufficient to replace the actual curve of U(x) with

a single linear portion having as its slope the maximum slope of the true

curvse as shown in Figure. 6, since the largest contribution to the integral

I(Q ) of Equation 172 must come from the area in which ( ) is greatest.

In this case one may writes

and the integral I(J ) is broken up into three partst

lie

I I -*



Here the only contribution to I(W) will come from the second interval

S 2 ) e 0 for the other segments of the curve. Thent

or, substituting the expressions for q(xb ),

(173)

Performing the integrations indicated in Equation 173, one obtains for

the value of the integral expressions

(z---x1

wh-ere m( ) has been replaced by its equivalent form (2xl

As pointed out previously, the quantity (/ ) is equivalent to (4)%)

by the scheme of non-dimensionalization employed in the derivation of the re-

fined model. Hence, one may write;

-where I

The similarity in form between this expression and the corrected

exponential factor of the simplified model, e.g.,

allows for direct comparison between the two forms for evaluation of 
the

average space lag and the correction factor. Thus, if:
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G ( ). /,v., o.,(176)

then:

as desired.

From the results of 176$ one notes that the expressions for both f and

G(c j!) exhibit a harmonic behavior, a fact in keeping with the inability to

express I (C4 )'in a series expansion of ascending powers of frequency. Also,

it is apparent that the space lag Is which represents an effective average

position for a concentrated combustion front replacing the actual distributed

combustion, exists at a location between the beginning and end of the straight

line segment approximating the maximum rate of rise of a(x), Thus:

since:

'TAN Y1

In the particular case where the actual velocity i(x) exhibits a

relatively steep rise, the expression for may be considerably simplified.

Thus, when (i)~*

then: W.C.se

and: 7-4NC..)CA

141

or: T - , ., .- L ,) - (,< - , .. o((7)

Hence: "('* -' . ) "0(..) (177) :
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These results show that, as might be expected, the correction factor

G(6 .p)) approaches 1.0, and the location of the average space lag approaches

the start of the rise in gas velocity as the velocity distribution becomes

steeper and is thereby more closely approximated by a discontinuous combustion

frontg. (The approximation tan) -W CA is a reasonable one for values of

WA. as great as 0o4 or 0.5. In the experiments described herein, the maximum

- 0.15, allowing the use of this simplification for a as large as 3.0j, or

as small as 0.3.)

Returning to Equation 162 and substituting the derived values for the

correction factors as expressed by Equations 166, 168, and 176, one obtains a

final combustion chamber equation for the combined theoretical model as followas

.~ Ty j~" z____ -

with explicit definitions for L ,A. ,4 , and f given by Equations 169,i

170, and 176. This linearized, complex equation is the basis for analysis

of the experimental data to obtain the four combustion time lag parameters,

S Qg np and T ,4 * The exact method of application of

the equation to the data is discussed in detail in a later section.
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EXPER .ENTAL METHODS AND EQUIPMN

Eperimental Requirements

The experimental phase of this investigation is designed with the

object of obtaining sufficient empirical data to determine combustion time lag

parameters as described by the theory and to check the validity of the assump-

tions involved. Reference to the final combustion chamber equation (177) shows

that primary experimental requirements consist of measurements of the rocket

motor transfer function and the instantaneous propellant mixture ratio, These

data must be obtained under conditions of stable combustion in the presence of

small. controlled$ sinusoidal oscillations in both propellant flow rates, since

an exponential form of time variation for all perturbed quantities has been

postulated throughout the theoretical analysis.

Initiation of a series of instantaneous step function or usquare-

e96 pulses in one or both propellant feed lines and subsequent detection of

the chamber response to such sharp changes in conditions appears at first glance

to be a more direct method of obtaining time lag parameter data than the pro-

duction of sinusoidal perturbationso However, a number of latent complications

in the single-pulse technique make it less desirable than the method chosen.

These difficulties may be grouped into two major categories& indeterminacy of

the input function and uncertainty in observation of the chamber response.

In the first category, the primary obstacle is the production of a

true ustep" change in flow rate by a practical, positive displacement method.

The unavoidable presence of inertia in mechanical systems causes deviations from

a truly instantaneous change from one operating level to another, and even

minute values of compressibility and elasticity in liquid propellants and the

feed lines containing them may be sufficient to cause serious wave-travel

effects. In addition, determination of the precise shape of a pulse which is
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acceptably close to a true step function requires extremely high frequency

response instrumentation, a demand which is as yet unsatisfied in the realm of

flow rate measurement,

From the viewpoint of observation of output from such a pulse input,

the problems are chiefly those of analysis. Even an exact step change in flow

rate must be smoothed out in the combustion chamber into a much less distinct

shape by the action of turbulences non-uniformities in liquid droplet size,

deviations from purely one-dimensional flow conditions, and the existence of re-

circulation patterns. Therefore, it becomes impossible to measure an exact time

elapsed from the instant of injection of the pulse to a subsequent instant when

this pulse has produced a similar change in chamber conditions. The only data

immediately evident from an analysis of chamber pressure, temperature, or gas

density records obtained with the optimum equipment available are those of a

minimum and a maximum combustion time lag at operating conditions whose average

is ill-defined. Rven when both input and output wave shapes are considered

known to an acceptable degree of precision, determination of a proper mean

value of the time lag requires the use of complex Fourier methods in which the

presence of random frequency combustion Onoisem may contribute serious and in-

distinguishable effects.

These disdavantages indicate, in part, the desirability of producing

some sort of continuous fluctuation in flow rates which would be amenable to

analytical treatment. The method chosen for the investigation herein reported

is merely the application of well-known mechanical techniques of simple harmonic

motion for producing near-sinusoidal oscillations from pistons driven by a

rotating1 eccentric crankshaft. The obvious mechanical difficulties of such

a system, e.g., complicated construction, eccentric balance problems, develop-

ment of reliable dynamic seals, continuous lubrication of bearing surfaces,

are compensated by a number of significant gains over the single-pulse technique.
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Chief among these advantages is the ease of analysis of the fluctuating signal.

Determination of the rocket chamber transfer function reduces to the measurement

of the amplitudes and phase relationships of three sinusoidal signals of known

frequency, free from transients and well within the response range of present

sensing and recording instruments. These same amplitudes and phases also de-

termine the value of instantaneous propellant mixture ratio, a quantity which

must be closely controlled if the data are to be applied to the previously-de-

rived theory. Also of importance in analysis is the fact that in such controlled

variations the presence of random frequency combustion noise is easily detected

and may be selectively filtered from the signals, if desired, without altering

the characteristics of the fundamental oscillation of known frequency. In addi-

tion, this method of varying the input flow rates permits operation of the

rocket motor at essentially stable conditions with well-defined average or

steady-state values upon which small linearizable perturbations are supezimposed,

Thus1 the restrictive assumptions of the theoretical treatment may be very closely

approximated by the sinusoidal method of flow modulation with only minor sacri-

fices in mechanical simplicity.

In addition to these primary measurements of transfer function and

instantaneous mixture ratio the final combustion chamber equation indicates

a number of secondary experimental requirements. First. in order to calculate

fractional variations of all oscillating quantities, one must obtain average,

or steady state, values of propellant flow rate, mixture ratio and chamber

pressure. Also essential are injector pressures and rocket thrust for deter-

mination of the parameters i, H, K, and 0* The correction terms ,

s and require a choice of droplet drag coefficient as well as a

knowledge of steady-state gas velocity distribution along the chamber length,

which may be obtained from an axial pressure survey and the application of one-

dimensional flow equations.



Tw frtercouri.u~

Two further considerations contribute to the choice of experimental

procedures and equipmentt reliability and precision. The former is established

primarily by performing repeatability tests at essentially constant operating

conditions and observing the scatter of calculated results, while the latter

influences the design of instrumentation and experimental methods by requiring

that all measuring devices employed be amenable to straightforward observation

and calibration. These demands are met by obtaining duplicate measurements

from independent methods wherever possible and by comparing oscillating quan-

tities observed during rocket runs with values produced electrically and cali-

brated from standard instruments.

Measuring Vehictle

laboratory equipment required to obtain the desired experimental data

includes a rocket motor suitable for easy instrumentations a test stand relatively

free from non-linear and two-dimensional effects, a propellant feed system isolated

from interaction with the combustion process, flow-modulating equipment with ad-

Justments available for altering amplitude and phase relationship, and the es-

tabliahment of a standard test procedure for sensing and recording the desired

phenomena.

The initial phases of the test program were conducted with the objects

of establishing satisfactory procedures, testing the design features and power

requirements of a flow-modulating unit, finalizing the choices of test stand

and feed system components1 and determining the range of application and

operating characteristics of the instrumentation. For these purposes a simple

monopropellant rocket motor and feed system were constructed to operate with

ethylene oxide and small quantities of gaseous oxygen (14). The relatively

low temperature of this combustion made possible the use of an uncooled motor

which could be run with easily-installed pressure instrumentation for a dura-

tion of a half-minute or more. This stainless steel chamber with radial in-

/. . . .. ..



Jection is shown mounted on the thrust stand in Figure 7 in a configuration
in which a total of 121 test runs were made. The flush-mounted pressurei4 pickups are shown installed in injector and chamber in more detail in Figure 8.

Because the primary interest in combustion instability and the time

laIZ parameters which contribute to its understanding lies in the field of liquid

bioropellant rockets, the monopropellant system gave way, following the comple-

tion of the preliminary tests described above. to a bipropellant motor designed

for obtaining valid time lag data at three operating chamber pressure levels.

The propellant combination chosen for these experiments., and currently

in use on the test program, consists of liquid oxygen and ethyl alcohol C in

a commerially-available form containing approximately 5% water and smal, quan-

tities of gasoline, methyl alcohol, and ethyl acetate). This choice is based

primarily upon the wealth of available information in the literature concern-

ing reliable designs of rocket chambers, nozzles, injectorsp and feed system

elements for use with these propellants. Since the development of a high-

performance rocket motor is not a primary objective of the program, it was

felt that the adoption of a thoroughly tested propellant combination using

proven component designs would represent a considerable saving in time in the

experimental phase of the work.

The rocket combustion chamber itself is machined from solid copper

bar stock as a thick-walled cylindrical shell of 3 - inch inside diameter,

6 - inch outside diametero and a length of 4-1/64 - inches. A sectional

view of the chamber, injectorg and nozzle is shown in Figure 9. The motor

is run uncooled for ease of installation and replacement of the flush-mounted

pressure pickups (as illustrated in this figure) for a total run duration of

10 to 15 seconds. The e of the chamber-nozzle combination is approximately

47 inches; and the motor is designed to operate at 300, 450., and 600 psia

chamber pressure levels, producing nominal thrusts of 250, 400, and 550 pounds,
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respectively, at each of these pressures at a design mixture ratio of 1.35

(oxygen-to-fuel, by weight).

The injector configuration is based upon a Reaction Motors, Inc..

design with two concentric manifolds leading fuel and oxidizer into a ring

of paired injection orifices. This ring consists of twelve pairs of one-on-

oneq unlike , impinging streams with an impingement point zero distance from

the injector face. The orifice angles are chosen to give net momentum of the

mixed liqpids in the axial direction, and the orifice diameters are designed to

produce a pressure drop of approximately 120 psi under steady flow conditions,

Thus, separate injectors, similar in all dimensions save the orifice diameter,

are employed for operation at each chamber pressure level. The injector assembly

is machined from solid brass stock in three parts, silver-soldered together,

and bolted to the copper chamberO with "Flexatallic" sealing gaskets at the

interface.

The nozzle design is based upon a Purdue University prototype of a

double-conical form with exit diameter chosen for correct expansion at 600 psia

chamber pressure. The converging-diverging walls are 1/4 - inch thick copper

with conical half angles of 300 and 150 at entrance and exit, respectively,

and a throat dijameter of 0.875 = inch. Spirally-wound copper wire and split

filler blocks on the outside nozzle walls form helical passages for coolant

water, which is pumped through this jacket at an inlet pressure of 400 psig 4

and an outlet pressure of 100 psig.

The test stand on which the motor, flow-modulating unit, and some

feed system components are mounted is illustrated in Figure 10. The stand

is built on a concrete base with flat aluminum top, an arrangement which is

simple, sturdyq and spacious enough for instrument installation and mainten-

ance. The supports for this stand are of leaf-spring type, permitting only

one degree of flexural freedom, with sandwich construction supplying rigidity
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Figure 10 also provides a view of the flow-modulating unit installa-

tion, details of which are shown in Figure 11. The design is based upon mono-

propellant experience and is a straightforward crank-piston arrangement with

a 0.O0 - inch crankshaft eccentricity. Connecting rods are aluminum, turning

in roller bearings and attached with wrist pins to stainless steel pistons.

These pistons are machined with two hardened bearing surfaces which ride in

oil-filled porous bronze bearings pressed into the surrounding stainless

steel cylinders. Since the pistons have a fixed stroke of 0.20 - inches, de-

aired amplitudes of modulation are achieved through the use of various sizes

of piston-cylinder diameters, ranging from 0.195 - inch to 0.409 - inch. The

seal at this cylinder head is obtained from cup-shaped, Teflon gaskets, im-

pregnated with Fiberglas for additional strength and lubricated with an inert

fluorocarbon grease. The cups are held in place by a removable piston cap.

Power for the system is furnished by a 5 - HP, U. S. Motors Varidrive electric

motor through a belt-pulley drive with 2:1 diameter ratio, providing modulating

frequencies of from 59 to 248 cycles per second. The fuel and oxidizer halves

of the crank shaft are joined by a split flywheel with 1° angular markings#

which permits adjustment of the phase between the two modulations to any de- i
sired value before each rocket run.

The feed system9 as seen in Figure 32, is a simple gas-pressurized

one, employing nitrogen or helium as the inert gas. Fuel is supplied from a

20 - gallon, stainless steel tank, while the liquid oxygen is retained in a

40 - gallon, vacuum-jacketed, monel tank. Two sets of propellant valves are

installed. The upstream Oemergency' valves are pneumatically operated, while

the main valves are hydraulically opened models obtained from a commercial

design of a rocket motor. Both pairs of valves are controlled by solenoid

operation of a pilot gas pressure, and both are spring-loaded for fail-safe

closing. An extra by-pass needle valve is installed in the liquid oxygen line

/ -4



for pre-oooling the oxygen system,

Multiple-hole cavitating venturis are placed in both feed lines be-

tween the main propellant valves and the flow-modulating unit for the purpose

of isolating flow pulsations and combustion disturbances from the highly elastic

feed system and storage tanks. Design details of these venturis are shown in

Figure 13. Since the venturis continue to cavitate for downstream pressures

as high as 0.8 of the upstream pressure, they permit the pre-run determination

of constant average flow rates from the choice of tank pressures only, inde-

pendent of small variations in downstream pressure. The multiple-hole configu-

ration was chosen after some experience with single-hole venturis for the pur-

pose of reducing the overall bubble volume and hence minimizing the effects of

this capacitance upon the creation of near-sinusoidal flow oscillations.

Operation of the motor for these short duration tests has been re-

duced to a simple standard procedure involving remote firing from a console,

observation through armored periscopes, and photographing of primary gauge

readings within a reinforced concrete control room3 illustrated in Figure 14.

The procedure consists of five successive stepat pre-cool of the oxygen system

through the by-pass needle valve; full flow of liquid oxygen for a period of 10

to 20 seconds; acceleration of the flow-modulating unit to full speed ( 5 to 35

seconds); electrical ignition of a solid propellant squib igniter; and initia-

tion by opening the main fuel valve. The last step in this procedure is

accomplished automatically when the squib igniter burns through a fuse circuit

thereby operating relays which open the main fuel valve and furnish power to

the timer circuit for the gauge panel clock and sequence camera,

Sensing and Transducing Instrumentation

The instruments required for measurement of time lag parameter data

have been described in detail in several previous publications (15., 27)., and

it will suffice here merely to describe their principles of operation and the



reasoning behind their selections grouping them according to application for

sensing and recording either steady state or transient phenomena. Wherever

possible, an attempt has been made to duplicate these measurements in two in-

dependent sensing elements.

The steady state data of interest consist of thrust, chamber and in-

jector pressures, flow rates, axial pressure distributions, and heat transfer

rates. The first of these, rocket motor thrust, is observed on a Bourdon-type

gauge as the force derived from oil pressure in an kiery hydraulic load cell

mounted on the concrete base of the test stand and receiving its input load from

a bracket bolted to the test stand table top. Total deflection of the stand (and

hence of the piston within the load cell) under the action of the maximum thrust

load is approximately .002 - inch, eliminating the necessity of considerations of

two-dimensional loading from the parallelogram-type stand. A separate electri-

cal indication of thrust is obtained from an unbonded four-arm strain gauge

pickup in the form of a tension member mounted on the same test stand bracket

which, in turn, transmits the thrust force to the hydraulic load cell. This

strain gauge pickup is used as a Wheatstone bridge circuit and is powered by

a 90 - volt battery source.

Rocket chamber and injector pressures are also observed both pneu-

matically and electrically, the former appearing as indications on Heise-

Bourdon gauges in the control room, receiving their input pressures direct

from taps in the motor wall and injector manifolds. Electrical signals again

originate in strain gauge pickups, each forming two active arms in a battery-

powered bridge circuit. The pickups employed are Li-Liu, double-catenary-

diaphragm, water-cooled models to be described in detail in a later section.

Propellant flow rates are measured from the output frequencies of

Potter turbine-type flowmeters mounted directly in the lines just upstream

of the main propellant valves. A secondary indication of flow rates is ob-

tained from the individual injector pressure drops.
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Axial pressure distribution along the length of the chamber is ob-

served by two separate methods, neither of which is considered entirely satis-

factory. The first method attempted involves the use of Statham strain gauge

differential pressure meters powered by an alternating carrier current and

providing an amplitude modulation as an output signal. The necessity for

rather complex electrical equipment, including commutation for observing five

separate pickup outputs in a 1/2 - second cycle, and the requirements for addi-

tional remotely-controlled valves for protection from overpressure during start-

ing and shut-down transients make this system somewhat cumbersome and expensive.

The alternate procedure of photographing armored manometers) although a more

direct method for obtaining pressures, also suffers from the complication of

protective valving as well as from the long response time of connecting tubing.

Heat transfer measurements are primarily intended for an associated

investigation (28)j however they also furnish correction data for performance

calculations and are extremely reliable for indicating the existence of

"screaming" oscillations in the motor. For this purpose, inlet and outlet

thermocouples are embedded in the cooling-water tubes for the chamber pressure

pickup and the nozzle*

The transient data requirements are fewer in number than those for

steady state data but considerably greater in complexity. They consist of

instantaneous flow rates, chamber and injector pressures, and frequency of

flow modulation, of which the only relatively simple measurement is the last

one. This frequency is determined directly from the rotation of the modu-

lating unit crankshaft by embedding a two-pole permanent magnet in the shaft

and observing the output frequency from a Potter flowmeter coil mounted on

the thrust stand immediately above the magnet.

Of the two remaining measurements, the more difficult is certainly

that of instantaneous flow rate. Previous attempts had been made to use the

Li maas flowmeter and one model of an electromagnetic flowmetb.r However,
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the problems of fluid and electrical leakage, low natural frequency., electrical

drift,9 and non-magnetic properties of organic fluids indicated a rather exten-

sive development program with doubtful results before either of these methods

could be considered satisfactory. This reasoning led to the choice of the

present method. that of the application of a linearized form of the non-steady,

incompressible$ axially-symmetric equations of motion to the problem of pul-

sating liquid flow through an orifice The application of this equation reduces

the flow measurement problem to that of evaluation of inertial parameters from

the geometry of the particular orifice configuration used and instantaneous

measurement of the pressure drop across the orifice. The method was first

applied to the radial injection system of the monopropellant motor and then

for the simpler straight-orifice design of the bipropellant injectors the

theoretical analysis of which is given in Appendix C. A more complete dis-

cussion of the method and its general applicability is given by Wick (29).

At the modulating frequencies encountered in the present operation

departure of the flow rates from those calculated by the steady state

Bernoulli equation are quite small; and a variance between actual flow-

pressure drop relations and those predicted theoretically of as much as

twenty percent would still have a negligibly small effect upon the total flow

rate at any instant, Neverthelese, a study was initiated to attempt to evaluate

the theory by experimertal techniquea (30, 31)p with considerable effort spent

on the development of a liquid hot-wire anemometer 0 It has been found that

although this instrument has application in a few specialized cases, it is

not generally acceptable for measurement of amplitudes of flow oscillations;

and even in flow-pressure drop phase ineasurements, it suffers generally from

restrictions of natural frequency and effects of vapor bubbles on the wire.

These considerations have led to the present "momentum method" for evaluation

of the theory, in which the instantaneous thrust of the injector manifold under

A
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pulsating flow conditions is measured by mounting a mock-up of the injector

on a cantilever bean containing bonded strain gauges.

The great importance of instantaneous pressure measurements in both I
rocket chamber and injector manifolds is thus emphasized, for these data are

essential in the determination of both fractional perturbations in chamber

pressure and instantaneous flow rate, the two primary parameters contributing

to the rocket transfer function. Because of this emphasis on reliable pressure

measurements, a great deal of effort has been expended in the development of

the Li-Liu pressure pickup (27,32, 33). An exterior view o± the model of this

pickup used in the injector manifold is shown in Figure 15o The major ad-

vantage of this pickup is its ability to be flush mounted, by virtue of the

exLstenoe of cooling water passages between its double diaphragm. This con-

struction is indicated in the sectional view of Figure 16. The pressure-sensing

diaphragm is formed from a004 - inch thick stainless steel of catenary cross-

section producing linear deformation with application of pressure. This

pressure is transmitted through a spacer ring to a second, mirror-image dia-

phragm upon which rests the thin-walled aluminum strain tube. This tube is

doubly-wound with special alloy strain wires for thermal and inductive compen-

sation. Provision is made in the differential pressure models for the appli-

cation of a reference pressure to the inner diaphragm, allowing for a more

sensitive, but shorter-range, instrument. Safety stops are embodied in the

spacer ring design to prevent overpressure damage in either direction. A

series of thermal drift tests resulted in a recent design for an extremely

stable chamber pressure pickup which is flange-mounted to the outer chamber

wall and has double cooling Jackets with separate inlets and outlets, pro-

viding drift-free operation at 600 psia chamber pressure. The two sets of

strain gauge windings form two active arms of a battery-powered Wheatstone

bridge. and the pickup output, at approximately 60 volts input, is of the
\
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order 0.2. millivolt per psi.

The final problem in observation of data is that of time

orientation, i.e., the coordination of all indicating and recording

instruments from a starting point in time. This chosen start time is the

opening of the fuel propellant valve, which marks the beginning of actual

combustion in the rocket chamber, As previously mentioned, this operation

takes place as the result of the opening of a relay in the igniter fuse

circuit. This one circuit-breakage initiates three coincident indications

of time during the run. The first of these is the transmission of power

to an electric photo-timer clock with 10-second sweep which is mounted on

the gauge panel of the operating control room. The same signal initiates

a "pulse" circuit which operates the sequence camera photographing the

entire gauge panel. Simultaneously, power is transmitted to the central

recording room, remotely located, energizing a relay which conveys a

l00-ops timer trace to a magnetic tape recorder for transient signals and

a l-cps signal to the steady state recording potentiometers. Thus, all

gauges are photographed at times which appear directly on the photograph,

and a reference time indication appears on all recorded data.

Recording Instrumentation

All electrical signals from which permanent records are desired

are transmitted by shielded cables through an underground conduit from the

test cell via the control room to a central recording room which is

isolated from extraneous outside electrical disturbances and shielded from

the possible effects of test cell explosions. A schematic representation

of the location of components and the instrumentation involved in pressure

measurements is shown in Figure 17a

Records of all electrical steady state data are afforded by

recording potentiometers of the Leeds and Northrup Speedomax type arranged

I - i
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in the central recording room as illustrated in Figure 18. The bridge

circuit output from the strain gauge thrust pickup is recorded directly on

a 20-milivolt range instrument, while the frequency outputs of the

Potter flowmeters are transmitted through integrator circuits whose d.c.

outputs (directly proportional to frequency) are recorded on 10-millivolt

potentiometers. A similar integrator circuit is used to transform the

modulating frequency into a d.c. voltage ohich is recorded on an adjustable

range potentiometer. Pressure pickup outputs must be simultaneously

recorded on both steady state and transient instruments$ which must be

electrically matched to prevent interference and non-linear signal drainage.

For this purpose battery-operated cathode follower circuits are employed

which serve to isolate the steady state recorders from the transient

instrumentation and also act as attenuators, reducing the pickup outputs

to a rmge compatible vith the 10-millivolt potentiometers on which

steady state pressures are recorded. Thermocouple outputs are indicated

as temperature differences on adjustable-range instrumentso In the tests.

in ihich the Statham differential gauges are used to measure axial pressure

distribution their outputs are obtained from demodulation of the alternating

carrier voltage and are portrayed on a six-channel Hathaway lighb-beam

galvanometer oscillograph.

Transient data are recorded simultaneously with., but independent

from, steady state signals through aao0 equipment located in the central

recording room as shoun in Figure 19. The primary transient instrument is

an Ampex 7-channel FM magnetic tape recorder with a flat frequency response

from dp, to 10,000 cps, Three channels are used for recording the osillating

portions of oxidizer and fuel injector pressures and rocket chamber

pressure, while a fourth channel carries the 100-cps trace for time

orientation. Since this recorder requires an input signal of approximately

1.0 volts for optimum fidelity$ two stages of amplification are applied to
i

the pickup output signals before introducing them to the tape, The first of .4

.7-----
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these stages is a d.c. powered pre-amplifier circuit with a gain of

approximately 10, uhile the second consists of Technology Instrument

Corporation multi-range constant-phase^ amplifiers with variable gain of

from 10 to 1000. The Ampex tape recorder is the only instrument employed

for obtaining quantitative transient records; however, for monitoring

during rocket runs and for qualitative observations of data during play-

back from the magnetic tape, a 4-channel oscilloscope (with strip-film

attachment available) and the aforementioned recording oscillograph are

both utilzedo

Calibration Methods

Wherever possible, instrument calibrations are conducted with

primary electrical, pressure and force standards in conditions simulating

actual installations on the rocket test stand. The sensing elements are

all calibrated by static methods, save in the case of t he development of

the Li-Liu pressure pickup, vhere some dynamic tests have been conducted (32).

All calibrations are performed at regular intervals.

The trust pickup and hydraulic load cell are calibrated coincidently

by applying a thrust load to the test stand through a factory-calibrated

proof ring and observing the deflection of this ring with a standard

machinist's dial indicator gauge. Known pressures are applied to the Li-Liu

pickups during calibrations with a dead-weight tester, and the pickup out-

puts are observed on a hand-balm ced potentiometer with light-beam galvano-

meter. These tests determine the pickup output sensitivity under fixed

voltage conditionsp indicate the extent of the linear output range of the

differential models, furnish a check on possible hysteresis or "h ack- lashm i

effects, and provide information on pickup repeatability through cycling

tests. A typical output curve from such a cycling calibration test is

reproduced from a previous publication (32) in Figure 20. Tests of "hot"

sensitivity of differential pickups under actual firing conditions are
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aocomplished by applying successively tuD different values of reference

pressure to a pickup during a rocket run and comparing the outputs from

these two differential pressures at essentially constant chamber pressure.

The Potter flowneter sensing elements are factory-calibrated by direct

time-weighing methods with fluid density and thermal contraction corrections

appliedo Calibration of the dfferential cells for a.al pressure

measurement is performed by applying pressure from a mercury manometer,

The steady state recording potentiometers are calibrated in a

straightforward manner from hand-balanced potentiometer inputs. These

tests, when conducted with the cathod follower circuits installed, constitute

checks on the linearity, hysteresiss and output sensitivity of the complete

steady state pressure recording system. All Bourdon gauges are checked by

dead-weight gauge tester, and the frequency integrating circuits are

calibrated ith inputs from 6 0-ops and 120-ops regulated line voltage.

Calibration of the transient recording system is a somewhat more

complex procedure and is perfomed in two separate operations, one before

and one following a rocket rune Each involves the simulation of pressure

fluctuations by an oscillating electrical s ignal which forms an input to

the amplifier systen is played through the complete transient network at

apprcxlimate run settingsp and finally appears as a magnetic sgnal on the

tape recorder. In the pre-run operationg individual recording channels

are calibrated separately for amplitude sensitivity by choosing an

electrical input of the size expected from the pressure pickup signal

during the rui and at the preset run frequency. Calibrations of phase

differenoes between channels arising from the recording network are obtained

in the post-run operation by simultaneously recording signals of the average

run amplitude and the exact run frequency on all three transient pressure

channe Is,

,/1
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ANALYSIS OF EXPBR NTAL DATA

Reduction Of Primary Data

A sample calculation for data points obtained during a typical

rocket run is contained in Appendix D, with all steps in the data reduction

procedure given in detail. The follwing discussion is therefore limited

to a general explanation of the data handling operations involved and the

calculation methods employed.

Primary steady state data are comprised of two major forms gauge

panel photographs and Speedomax recorder chart.s The former are quickly

reduced to corrected pressures and thrust by projecting the 70-mm strip

film on a screenp reading the indicated gauge values, and correcting these

readings from the dead-weight and proof-ring calibrations of pressures and

thrust, respectivelyo At the same time, the instant at which each photo-

graph was taken is noted from the gauge panel clock, and reliable points

after the starting transient and before the release of pickup reference

pressure preceding the end of the rocket run are selected. These photo

times then determine the locations on the Speedomax charts at which data

are to be read, The marker pen indications on these charts specify the

instant of zero time from which the reading times of valid points are

located as distances from the known recorder chart speed. Net chart readings

at these points are then converted to numerical pressure, flow rate, frequency,

and thrust measurements from their corresponding calibration curves*

Corrections to the flow rate readings are calculated from thermal contraction

at the liquid oxygen boiling point and from the fuel specific gravity at its

measured temperature. Axial pressure distributions are either read directly

from manometer photographs or reduced to pressure values from the oscilograph

charts and accompanying calibrations.

Having decided from the oscilloscope monitor of the run that the

transient signals are of the desired order of magnitude for a constant mixture
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the permanent records of oscillating pressures from the tape recorder, The

important data to be derived from these taped signals are the amplitudes of

and phase angles between the chamber and injector pressure oscillations, and

these may be played back at the recording speed of 60 inches per second for

quantitative readings or 3 inches par second for display or investigation of

the wave form of each cycle. The linearimed perturbation analysis which pro-

duced the governing combustion chamber equation contains the inverse transfer

function of the rocket motor in terms of the response of the chamber at the

fundamental frequency of input oscillations, without the inclusion of second

order effects of squared terms in the frequency or higher harmonics of this

fundamental* For this reason, all three pressure signals are fed through

passive, F-L-C element filters of constant inter-channel relative phase.

These serve to eliminate small high-frequency oscillations and random com-

bustion noise without distorting the fundamental wave shape.

The actual values of oscillating amplitudes and phases are deter-

mined by a method which has resulted from considerable development efforts.

The original procedure consisted of direct measurements by linear scale of

the peak amplitudes and peak-to-peak phase distances on playback records from

the Hathaway oscillograph or from projected 35-m strip films of the 4-channel

oscilloscope face. This method was employed for reduction of monopropellant

time lag data (1)4), but it proved too cumbersome and inaccurate for use in

the bipropellant measurementsj for which a system was adopted using a Ballan-

tine vacuum-tube voltmeter for amplitude values and a Lissajous pattern on a

two-beam oscilloscope for phase readings (15). The phase difference between

any two signals was continuously nulled by hand during slow-speed playback

by the variable resistance of an R-L-0 phase-shift network. The required

nulling resistance was noted, and the phase angle corresponding to this

value was determined from previous calibrations of oscillator signals at run

- ~ - - - - - -- - - I
/l



95.

frequencies in which the eccentricity of the LissaJous pattern was measured

directly. Time orientation during playback was established by counting the

0O0-cps timer trace in a Berkeley electronic counter-timer and observing the

tape footage at which photo values of time occured.

Data reduction by these methods is extremely tedious and subject

to considerable human error in the judgment of both reading times and observed

values; hence a more reliable procedure of playback was developed which would

furnish accurate time reference and permanent records of transient values.

By this scheme, as seen in Figure 21, a signal amplitude is recorded as the

output of a crystal diode half-wave rectifier on a recording potentiometer

mhose marker pen relay circuit is activated by playback of the taped timing

traces giving an accurate time reference* A sufficiently large driving

signal for the diode is attained by the use of the aforementioned TIC ampli-

fiers and a 10 - gain phantom repeater circuit, with the variable gain

setting of the amplifier adjusted to prevent mclipping3 of the diode input

from saturation of the phantom repeater tubes. Linearity of the diode output

is assured by passing two non-zero voltages through the diode circuit and

presetting the adjustable-zero, adjustable-range recorder to place these

signals in their proper linear relationship on the recorder scale. Careful

choice of the values of these pre-set voltages insures that both calibration -j
and run signals will lie within the known linear range, and both these taped

signals are played back through this system to form a written amplitude record.

Comparison between run and calibration levels and multiplication by the known

calibration input produces the exact electrical value (in Millivolts) of the

run signal s and division by the previously-determined pickup sensitivity

(milli-volts per psi) transforms these readings into pressure units.

The final system evolved for phase measurement and recording

warrants some individual discussion. A phasemeter-recorder developed as an

experimental model by the Jones-Porter Instrument Company detects, by means
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of a discriminator circuit, the phase difference between two of the filtered

pressure signals and converts this angular difference to an electrical output

which is used to drive a small servo motor attached to a Speedomax recording

potentiometer. Movement of the potentiometer slidewire produces and opposing

e.m.f. until the rotation of the servo shaft has completely balanced the in-

put voltage. The resultant null position is then a linear function of the

original phase difference. Velocity damping is added to stabilize the re-

corder operation, and frequency and amplitude compensations are made with

variable resistances at the phasemeter input. Any phase shift inherent in

the machine may be determined through a split oscillator signal which furn-

ishes a third input to the meter. The recorder output is calibrated either

from a commercially available phase standard or by Lissajous pattern eccent-

ricities. Again the potentiometer marker pen relay is used with the taped

100-cps trace as a timing reference.

Calculation Procedures

Once these primary values have been obtained, the secondary data

reduction processes are performed as a combination of hand computations and

electronic operations on an IBM digital computer (Model 604) of the card

program calculator types These calculations are broken down into three

successive stages, each of which depends upon outputs of the previous stage

as inputs for the current stage. The overall calculation procedure is

illustrated in block diagram form in Figure 22.

Calculations of the steady state parameters required as inputs to

any of the stages may be performed at any point during the data reduction

pro.resso In addition to the primary values of propellant flow rates, injec-

tor pressures, chamber pressure, thrust and modulating frequency, steady

state data furnish inputs for hand calculations of injector pressure dropsj

mixture ratio, total propellant flow, and axial pressure distribution. Vropm

these and measurements of the nozzle throat diameter, the characteristic
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velocity, c*, is computed. Plots are made of the variations of thrust with

flow rates chamber pressure with flowrate, and thrust with chamber pressures

These plots furnish a secondary source of total flow rate or chamber pressure

if the primary source of either is not reliable because of instrument mal-

functions and also act as a check on the validity of such primary readings.

From calculations of adiabatic flame temperature and equilibrium composition,

theoretical curves of various steady combustion parameters are constructed.

and from these) at the observed rocket chamber pressure and mixture ratio

of each valid point, one obtains theoretical values of flame temperature,

characteristic velocity, specific heat ratio for both chamber and nozzle,

combustion gas mean molecular weight, nozzle inlet Mach number, and the slope

of the flame temperature-mixture ratio curve. From the ratio of actual-to-

theoretical c* and the theoretical temperature, one obtains the actual cham-

ber temperature. Application of the perfect gas law and the theoretical

molecular weight then produces a value of combustion gas density which, to-

gether with the total propellant flow rate, is sufficient for computing an

average gas velocity assumed to exist at the combustion chamber exit. A

second computation of this velocity arises from the application of one-

dimensional incompressible flow theory to the axial pressure distribution.

The speed of sound in the chamber is computed from the actual c* and a

theoretical value of chamber specific heat ratio, And both gas velocity

figures are non-dimensionalized by this sound speed. Comparison between

each of these calculated Mach numbers and the theoretical value for isentropic

flow then reveals any order of magnitude discrepancies which may exist in the

primary data or the intermediate computations.

Independent of these secondary steady state calculations or of the

partir;ular theoretical model chosen to define bhe combustion time lag para-
meters, the first stage of transient calculations requires only steady and

transient pressure data as inputs. From these amplitudes and phases, together
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with the theoretical injector inertial phase lags, this operation produces

values of the transfer function and instantaneous mixture ratio in the form

of the arguments and moduli of two complex numbers* Two intermediate complex

quantities in addition to those already discussed arise during this calcula-

tione The equations governing the various steps are as follows:

(a) Rocket transfer functions

(179)
(b) Instantaneous mixture ratios

where the fractional variationsAojq,4 f and 4 are defined prior to

Equations 21 and 15. If one now defines two additional fractional oscilla-

tions byr

where:

= instantaneous fuel injector pressure

14Prp = instantaneous fuel injector pressure drop,

then the transfer function may be written ass

These individual ratios are shown in vector form in Figure 23 and

are calculated by the following relations:

d, p:
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II

where:

I = fuel injector inertial phase lag

= fuel injector pressure amplitude

P = chamber pressure amplitude

0-0 = phase between fuel injector and chamber pressures.

Final expressions for the parameters of Bquation 179 are then written ast

(182)

where Ro ando represent corresponding transfer function quantities

based upon the oxidizer. The outputs of the first stage of calculations

then consist of these micture ratio and transfer values: Ro R e,

PO I



Following this first stage of computation, one may proceed to a

determination of the time lag parameters. Reference to the final combustion

chamber equation, 178, shows that these variables are four in numbezi mean

total time lag,~ average residence time of burned gases downstream from

the combustion zone,fee; time lag interaction indexjY ; and mean sensitive

portion of the time lag2t . Calculation of these four quantities is accom-

plished in two separate stages, the initial stage yielding values o tT and

from an approximate form of the combustion chamber equation, and the

subsequent stage furnishing quantitative indications of the remaining un-

knowns, In andt * An examination of 178 shows that the first term on the

right-hand side of the equation contains the product of total gas residence

time and modulating frequency. At very high values of frequency, this term

may easily become a dominant one in the equation; and for a reasonable mag-

nitude ofea, the term will reach values greater than 0(i) as frequency

incresseso However, the final term on this side of the equation will always

be of 0(l) by virtue of its exponential form. Therefore, at values of the

modulating frequency for which the product (6)19) is much greater than 1.0,

the final term, containing two of the unknown time lag parameters, will be-

come negligibly small in comparison with the first term (and others) on that

side of the equation, reducing the number of unknown parameters by two. This

is the approximate form of equation used in the second overall calculation

stage.

Separation of the real and imaginary parts of this approximate

equation produces two equations in two unknowns, from which a direct solution

is possible for both fe, and.- r at each of the experimental values of modu-

lating frequency* The behavior of each of these parameters as a function of

frequency must be asympotic, since the approximation on which the equation

is based becomes more nearly valid as the frequency increases. The asymp-

totic value approached by each of the variables must then be the correctI
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value of the unknowns which theoretically will be independent of frequency.

Hence, plots of+G andT Tover the frequency spectrum should produce reliable

results for these parameters at the high frequency end of the curve* The

degree to which each variable approaches a true asymptote is then an indica-

tion of the maximum frequency required in the experiments.

Having determined these asymptotic values of3e)andtT, one may

then rewrite the original combustion chamber equation in its exact form,

treating these quantities as knownp and solving for the remaining unknown

parameters, 41 andy o Again separating real and imaginary parts of this

complex equation, the third and final stage in the calculation procedure

becomes a straightforward analytical solution in which the departure of the

results of the approximation from the asymptote is an indication of the mag-

nitude of the final unknownso.

The most difficult and intricate calculation in the three stages

is obviously the second one, involving solutions of the approximate equation

Two approaches to this computation are taken, with the choice of method de-

pendent upon the reliability of the measured distributions of axial velocity

(pressure). One approach assumes that the position of major heat release

is known from axial velocity distributions as expressed in Equation 176,

but that the overall gas residence timejea (which is equivalent to the inverse

of the final chamber gas velocity), is unknown. Reduction of the approximate
form of Equation 178 results in a solution foree of the formt

(A.u JG9-S 'C ~(

wheret

yT modulating frequency

A3 B jD = constants at each point dependent

upon steady state va.iLues and first

stage outputs.
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Solutions to this transcendental equation exist at points of intersection be-

tween the parabola of the left-hand side and the displaced sine curve of the

right. These intersections are determined through convergence of a Newton-

Rabson iterative computation performed on the IBM digital calculator.

The second approach to this calculation stage reverses the roles

of known and unknown quantities. In this method, the chamber exit gas velo-

city,1L1 j and hence the overall gas residence time, is assumed known from

calculations of the gas properties within the chamber and the total propellant

flow rate1 as previously described. The unknown then becomes the location

of major heat release, r9  i.eo, the average combustion mspace lag". Under

these conditions, the parabolic term of l5 is absorbed in the known constants.

and the equation takes the form:

f- C2 COS 3 1

where(

Ci, C2, C3 = constant terms at each point

CAJ - non-dimensional value of modulating frequency,

based upon chamber length and speed of sound

at the injector face.

Equation 184 is less complicated than 13 and is amenable .o analytical

solution forSIJ N however, the solutions obtained will in general be

complex, involving hyperbolic as well as trigonometric terms. In this case,

both real and imaginary parts of the solutions for T must be plotted as

functions of frequency. The requirements for validity of results are that

the imaginary portion approach zero with increasing frequency while the

real part approaches a constant asymptotic value which may be considered the

correct one. If these conditions are met within the available range of

modulating frequency, this method offers an extremely attractive alternative

to the determination of very precise axial velocity distributions,
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Inputs which are common to both procedures in the second stage of

calculation originate vLth the outputs from the first stage and a number of

the steady state quantities whose determination has already been described.

The first stage outputs of importance arer , Pri , and J-, while the

steady state parameters used are mixture ratio, modulating frequency, charac-

teristic velocity, specific heat ratio, chamber temperature, and slope of the

temperature-mixture ratio curve. Two geometric lengths are also required,

those of the cylindrical chamber and the subsonic portion of the nozzle.

The integrated velocity parameters, , and i/z (as described in Appendix A),

are computed for the conical exhaust nozzle and included as inputs.

The correction terms appearing in the combustion chamber equation

are calculated from the expressions given in Equations 169, 170, and 176.

These depend primarily upon the axial velocity distribution and its ntraight-

line segment approximation as previously discussed. In the first procedure

for second stage calcuation in which the space lag, or., is known, the

approximation of Equation 177 is used, since the maximum non-dimensionalized

value of experimental modulating frequency is of the order 0.l5. Under these

conditions, - which is the distance to the first sharp rise in axial

velocity. The second gas residence time correction factor, designated a in

Equation 176, is treated as a known function of gas velocity, regardless of

which stage procedure is employed.

The time lag distribution correction factors, a and depend

heavily upon the choice of droplet drag coefficients a quantity worthy of

sae detailed discussion Thd actual experimental measurement and deter-

mination of statistical average of a droplet drag coefficient for a multiple-

orifice, impinging-Jet spray is an extremely difficult and exacting task and

somewhat tedious for use in determining a relatively small theoretical

correction factor. However, reference to the literature on droplet and

spray analyses and experiments reveals the existence of a large number of
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glean sufficient information to make an order of magnitude estimate or

calculation of the drag coefficient in this particular injector-motor

configuration.

In the range of the droplet diameters and Reynolds' numbers

anticipated for such a system, a great deal of empirical data (34, 35) is

available which substantiates the assumption of the present theoretical

analysis of a drag coefficient inversely proportional to ReynoldS' number.

On the basis of this premise, one must determine reasonable magnitudes for

the several factors contributing to this Reynolds$ number, e.g., droplet

diameter, droplet Velocity relative to gas velocity, gas density, and gas

viscosity. Fairly accurate values of gas density and viscosity may be cal-

culated from the measured, derived, and theoretical gas properties;. and the

gas velocity distribution is measured as a primary input exclusive of these

correction factors, The only remaining properties are, then, liquid droplet

diameter and velocity.

This latter quantity is extablished if one considers the assump-

tion of the theory that drag coefficient may be considered a constant through-

out the droplet stay time within the chamber. The magnitude of drag effects

will certainly be greatest at the instant of injection into the chambers

since it is at this point that the greatest relative velocity between liquid

and burned gas exists. Also, at this relatively early time in the combustion

process, evaporation and surface burning effects are at a minimum, so that

the purely hydro dynamic considerations of the droplet dynamics equation

are likely to be most nearly valid. Therefore, rather than attempt to

estimate an average drag coefficient during the entire history of the

burning droplets, it will suffice (at least in the calculation of correction

factors) to evaluate this quantity at the injector face. Here the gas

velocity is zero, and the average liquid velocity may be computed from the

kmown injector orifice area and total propellant flow rate, with an average
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liquid density weighted by the known mixture ratio. In this manner the

problem reduces completely to the determination of a reliable value of

droplet diameter.

A great deal of empirical data is available in the published litera-

ture of the diameters of droplets resulting from single streams of liquid

fuels sprayed into air or another oxidizing atmosphere, but relatively few

quantitative data appear on the problem of impinging-stream sprays. Blair (36),

in a Project Squid survey on combustion of fuel drops, cites a thesis by

Simpson (37), saying '.. the size of drops in liquid propellant rockets

ranged from about 20 to about 60 microns in diameter"; and in a theoretical

study Penner (38) has chosen 50 microns as a representative diameter for

such droplets. One might therefore expect a reasonable choice of droplet

diameter for the injector orifices of the rocket motor employed in the

present program to be within this order of magnitude. An early paper by

lee (39), published in 1932, in which impinging jets of diesel fuel issued

from .028-inch orifices into air, shows measured mean droplet diameters of

approximately 24 microns at very high jet velocities. Much more recently

Schmidt (40) observed droplets of 33 to 77 microns diameter in the spray

of a single fuel stream issuing at somewhat lower velocity into an air

stream moving at speeds of 20 to 100 feet per second* The surprisingly

close agreement in magnitude of results of experiments conducted over such

a wide range of conditions indicates that the important parameters determin-

ing droplet diameter are -- as pointed out in a number of analyses -- liquid

velocity, gas viscosity, and injector orifice diameter. In an attempt to

correlate the data obtained from the two sources mentioned, the product

d; is calculated from values given in the references and this

orifice diameter - liquid velocity parameter is plotted as the abscissa

against the droplet diameter ordinate in a log-log plot shown in Figure 24P

assuming gas viscosities of the same order of magnitude in both experiments.,
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An approximate curve is drewn between the four points considered; and from

the known values of injector orifice diameter, liquid density, and injector

pressure drop at each of the three operating levels of the bipropellant motor

described herein, the curve was consulted to obtain values for expected drop-

let diameters of 28, 30, and 32 microns, the diameters increasing with chamber

pressure. A summary of this data is presented in Table I, with diameters de-

rived for use in this analysis shown in parentheses. Although these values are

certainly not precise, their order of magnitude is in agreement with the

aforementioned data for bipropellant rockets, and they may be considered

sufficiently accurate for calculation of correction factors.

A systematic computation of the average gas viscosity for use in

the Reynolds' number determination may be performed from the known theoretical

composition of the combustion gas at its equilibrium flime temperature. The

effects of chamber pressure on viscosity are considered negligible on the

basis of a comparison of the ratios of actual-to-critical pressures and

temperatures with the evidence presented by Comings and Egly (41). Quanti-

tative values of the viscosity of constituent gases at the existing flame

temperature are determined from an extrapolation of recent National Bureau

of Standards data (42) by the empirical equations presented with this data.

The average viscosity for the mixture is then weighted by the molar fractions

of each of the component gases.

From the above information, the final calculation of droplet drag

coefficient is a simple matter. The Reynoldd number is determined; and from

an empirical curve similar to that of Lapple and Shepherd (35) the product

of Reynolds number and drag coefficient is obtainedp assuming a spherical

shape for the droplets. Reference to the defining equation for the drag

coefficient in the form to be applied to the correction factor, and non-

dimensionalization by the length of the chamber and the sound speed at the

injector face, results in values for this coefficient, k, of from .028 to

~ I- /
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to .030. These are slightly smaller than the Mach number at the nozzle entrance,

but still of the same order of magnitude, as assumed in the theory.

A series of integrations are then performed to obtain the final correc-

tions !!: and * Values of k and gas velocity give, by successive nu-

merioal integrations on the digital computer, liquid velocity distribution,

total combustion time lag distribution, and the two combined velocity inte-

grals exhibited in Equations 169 and 170. Performing the computations indi-

cated by these two equations, one then acquires the values of and j.

Having all the necessary inputs, one may then perform the second

stage calculations by either procedure, select asymptotic values for S e,

and WAv ' enter the exact combustion chamber equation with these quan-

tities, and carry out the third stage computations to complete the deter-

mination of all four time lag parameters. j t

Experimental Accuracies and Errors

Before attempting to discuss the validity of results or the general

applicability of experimental methods, it is expedient to consider the magni-

tudes of possible errors in the data which arise from inaccuracies in the

measurements. To accomplish this, one must consider the inherent accu actes in

each of the measured inputs as determined by calibrations of the sensing, trans-

ducing, and recording instrumentation. Each of the primary measurements is

treated individually, with possible errors accumulated in the various steps

leading to its final value noted in succession.

Steady state chamber pressure obtained from Heise guage photographs

is considered accurate to + 2 psi. The gauge precision, based on the smallest

unit of pressure detectable, is -+ 1 psi, which is within the scatter of results

of repeatability and hysteresis calibrations by dead-weight tester. However,

uncertainties in observation of the photographs increases this to the larger

',I
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figure. Injector pressure Heise gauges are precise to - 2 psi, with calibration

accuracy again within these limits; but similar photographic uncertainties in-

crease this possible error to - 4 psi.

Determinations of these steady state pressures by Li-Liu strain

gauge pickups are subject to errors primarily because of thermal zero drift of

the pickup outputs. Although cold calibrations of the pickups through the

cathode followers and S.eedomax recorders show repeatability errors of only

- 2 psi, the uncertain location of zero points during a run may be as great as

- .05 recorder divisions, which represents ± 5 psi. Therefore a cumulative

error of 7 7 psi is conceivable. For this reason, photographed values of the

three steady state pressures are used wherever possible.

The accuracy of steady state thrust readings is controlled by the

calibration tests, since both photographed and recorded values may be read re-

liably with a precision of - I pound. Proof-ring deflection under load is

factory calibrated with a maximum error of ± 1/h pound; however, load-cell and

gauge hysteresis and strain gauge bridge current variations increase the possi-

ble error in thrust to - 2 pounds.

Factory calibrations of the Potter steady state flowmeters are

I accurate to - .002 pounds per second, which is of the same order of magnitude

as the precision with which the integrator circuit output may be read and is

greater than observable departure of this output from linearity with frequency.

Measurement of fuel specific gravity by hydrometer methods is considered

accurate to - .0005 in an average value of 0.790; but corrections to the liquid

oxygen flow rate for density and thermal contraction may be in error by as much

as 2% of the measured value, which, at high pressure operation, results in an

absolute error of 17.010 pounds per second. Thus although fuel flow is

measured reliably to - .001 pounds per second, the oxygen flow and total pro-

pellant flow must be considered possibly in error by as much as ± .010 pounds
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+
per second, resulting in a steady state mixture ratio accuracy of - .01.

The flow modulating frequency is measured by a Potter sensing coil

and integrator circuit similar to that employed in flow rate measurements.

Hence the integrator linearity and recorder precision and hysteresis deter-

mine the possible error, which varies with the range chosen for this adjustable

+
recorder. At frequencies of 100 cps or less, the error is - .01 cps; from 100

+4
to 200 opsp it is - .02 cps; above 200 cps, it is ± .025 cps.

The accuracy of transient pressure amplitudes is established by a

number of factors* Dead-weight calibrations of the Li-Liu pickups, the signal-

to-noise ratio of the transmitting circuit, amplitude distortion of the re-

cording systems linearity of the amplifiers, accuracy of the vacuum-tube volt-

meter for establishing calibration amplitude, linearity of the diode circuit

output, and precision of the Speedomax potentiometer are all contributing com-

ponents. Errors in the amplifying and recording systems are beat expressed as a

percentage accuracy figure of - 1%, which represents a maximum error of -+ 0.3

psi. Calibrations of the diode-Speedomax combination indicate linearity and

repeatability of approximately 1/2%, while voltmeter comparisons with an a.c.

++
i voltage standard at periodic intervals show an error of -1 %. Dead-weight test

pickup calibrations exhibit an observation and hysteresis total error of- .05 irv,

which represents a pressure of - 0.5 psi at average pickup sensitivities. The

cumulative error from all these sources totals approximately -I 1,5 psi. The

signal-to-noise ratio is retained at a value less than 0.1 millivolt; hence

variations of this magnitude are definitely discernable and represent realistic

values.

Because of the parallel-input calibration method employed, the accu-

racy of phase measurements is determined solely by the phase discriminating and

recording device previously described. Calibration of this instrument by com-

parison with a TIC secondary phase standard shows a systematic error varying
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from zero at zero phase difference to 1.6 degrees at 45 degrees phase difference

and returning to zero at 90 degrees. Comparison of the secondary standard with

a Lissajous pattern calibration having an estimated observation error of - 1/2

degree showed the same systematic error. By biasing the phase recorder 90 de-

grees and subtracting the output of the secondary standard, this 1.6 - degree

error is reversed in sign, indicating that the error originates in the standard.

For this reason it is felt that the phase meter-recorder system is more accurate

than the available standard, and the error in transient pressure phase measure-

ments is less than the value of + 0.5 degrees obtained from Lissajous pattern

calibrations.

The accuracy of time correlation for the various chart readings of

steady state and transient playback data is determined by the errors in clock

photograph observations and precision of distance measurements on the charts.

+
These cumulative factors produce an overall reading time accuracy of - 0.1

second*
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PRESENTATION AND DISCUSSION OF RhSULTS

Experimental Results

Direct experimental measurements and calculated results are

tabulated and plotted in graphical form for all acceptable data points in

groups according to the stage of calculation in which they are derived in

Tables I through VII and Figures 25 through 62. Data obtained over the

full frequency spectrum are further arranged for each operating level of

chamber pressure; and the test runs in these groups are presented in the

chronological order in which they were performed, with each point identi-

fied by a run number and the time from start of the run at which the par-

ticuar readings were observed. Figures pertinent to the discussion which

are not a part of direct experimental measurements or calculations have

been grouped in proper order following the presentation of results.

The most important measured and derived steady state values are

listed for the complete survey of acceptable points in Tables II - A, Bs

and C, each table representing one chamber pressure level, Correlations

between three of these variables; thrust, chamber pressure, and total pro-

pellant flow rate, are shown in Figures 25, 26, and 27, The slopes of these

three curves represent, respectively, thrust coefficient, specific impulse,

and characteristic velocity. The values of these slopes along with averages

of steady state direct measurements and calculated or theoretical gas and

liquid properties which contribute to the constant terms in the various

stages of transient calculations are given in Table III. The scatter of

these data around their averags values not only gives an indication of

repeatability of test runs but also acts as an initial standard of ac-

ceptability for each point. Thus, if the steady state conditions at one

operating chamber pressure level are not predictable and repeatable over
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at these varying frequencies are not considered comparable. The criterion

for steady state data acceptability. chosen on the basis of overall in-

+
strument accuracy, is a deviation of no more than - 3% from the average

curve at each operating point. In addition to this acceptability function,

the three correlation curves shown also provide a secondary source of

thrust, chamber pressure, or total flow rate data in the event that one of

these measurements is lost through instrument malfunction while all other

direct readings appear satisfactory. Since these performance parameters

are all functions of steady state mixture ratio, their use as acceptability

criteria implies a certain restriction in mixture ratio, The design value

of this quantity is 1.35, oxygen-too-fuel, by weight, and the nominal limits

imposed by the aforementioned _ 3% allowable variation are from 1.31 to 1.39.

This range has been arbitrarily extended in a few cases to include points

from early rocket runs in which propellant specific gravity corrections

could not be made because of the lack of temperature data. Point values

of this steady state mixture ratio as well as the results of succeeding cal-

culations of flame temperature and final chamber gas velcoity are included

in Tables II - A, B, and C.

Results of the first stage of transient calcu;Adion are shown

in the three tables, IV - A, B, and C and in graphical form in Figures 28

through 36. These are the values of the computed transfer function para-

meters and the instantaneous mixture ratio of fractional flow oscillations

previously defined as the complex quantity . o By the t.erms of the theo-

retical analysi.3 the desired condLition of onstant instantaneous mixturWe

ratio throughout all tests at one chamber pressure level are satisfied

exactly only when this ratio of fractional oscilaations has a value of 1. 0

with a phase difference of 00 betwee~n the propeilant So The degree to which
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this exact condition is approximated forms the second acceptability cri-

terion for data points. Since the maximum value of each propellant flow

perturbation is limited by the linearized treatment of the theory to ap-

proximately 10% of its respective total flow rate, a deviation of + 0.i

from exact equality of the two fractional oscillation amplitudes will repre-

sent a fluctuation in the overall instantaneous mixture ratio of only 1%,

which is the order of magnitude of terms neglected in the theory. Similarly, 4

a phase difference of + 100 between these perturbations will introduce a

sine component of order 0.1, which again represents approximately 1% of the

total flow rate values. These two conditions, e.g., A = 1.0 _ .1, + . 00 +

100, then form the standards for judging the acceptability of transient data.

Plots of the actual variation in these two mixture ratio perturbation para-

meters are shown in Figures 34, 35, and 36.

One notes from the tabulations that these limits have been re-

laxed for a small number of test points, particularly at high chamber pressure.

with/ . values ranging from 0.8 to 1.3 and A as great as 150 included in the

results. These runs have been accepted because equipment failures from

fatigue after many cycles of flow pulsing or from excessive heat transfer

rates at high chamber pressures precluded the possibility of obtaining addi-

tional data at more satisfactory conditions or because the resonance effects

of feed system components prevented operation at the particular value of fre-

quency which would produce the desired transient ratios°

It should be emphasized that this condition of equal, in-phase

fractional flow oscillations is the most difficult experimental requirement

to be fulfilled. Since the compressibilities of the two propellants are

different and since each one varies with modulating frequency and line pressure

in a manner different from the other, a particular pair of the fixed-stroke

pistons installed in the flow-modulating unit will produce equal fractional
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oscillations at only one value of frequency for each chamber pressure. The

diameters of the discrete number of pistons available were therefore chosen

on the basis of previous experience to achieve the desired constancy of mix-

ture ratio somewhere within ranges of frequency of approximately 25 - cps

width. The experimental procedure for producing acceptable transient data

then consists of the selection of the proper pair of pistons for the desired

frequency range and adjustments of frequency and split-flywheel settings in

successive runs until the required conditions are mete This adjustment

process is further complicated by the interaction between phase and ampli-

tude of the two oscillations through the resultant chamber pressure fluctu-

ation, which causes an interdependence of flywheel and frequency adjustments.

Also, since one is able to monitor only pressure perturbations, he must per-

form a rough calculation similar to the first stage procedure after each

rocket run to determine the approximate mixture ratio parameters from ob-

served values of steady state and transient chamber and injector pressures

as well as their relative phases. Differences between oxidizer and fuel in-

jector pressure drops and variations with frequency of transient amplitudes

and phases prohibit the establishment of overall pressure ratio limits prior

to actual running; hence, this calculation must be performed following each

run in order that acceptability may be established for that test. Because

of these complexities and this inability to predict accurate settings, each

acceptable rocket run is the result of approximately twelve attempts.

Calculated values of the transfer function parameters are pre-

sented in Figures 28 through 33 in the form of a modulus R and a phase angle

based on total injection flow oscillations° Although the combustion

chamber equations have been derived in terms of a transfer function based on

fuel oscillations only and multiplied by a correlating mixture ratio factorg

the frequency variations of such fuel-based quantities are subject to the
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random scatter of instantaneous mixture ratio and hence do not give a valid

indication of actual behavior of the combustion chamber. The use of overall

transfer function parameters based on total propellant fluctuations presents

the data in the form of primary interest, namely the response of the chamber

to small perturbations in injection flow rate (within specified mixture ratio

limits) over a range of frequencies of oscillation. Such response curves

may then be compared with those obtained at different average mixture ratios

or with similar results from a monopropellant system.

One notes that the modulus and phase presented are actually the

inverse of the transfer function as defined above, since they are the ratio

of propellant flow perturbations to the resulting chamber pressure oscilla-

tions. The definitions of the two parameters and their derivations from

previously-described quantities are as follows:

wheret

amplitude of injection flow oscillation

amplitude of chamber pressure oscillation

S= phase angle lag of chamber pressure

However.. from earlier definitions and from the derivation of

Equation 17;

Hence:=, Fi ed /) jI'i  J

4/ -_
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from which the overall parameters may be computed once those based on fuel

oscillations alone are known.

Although the range of modulating frequencies obtainable with

existing laboratory equipment does not extend below 60 cps, the curves of

transfer function parameters have been extrapolated to zero frequency or

steady state conditions. The behavior of both parameters at this point is

easily determined by substituting£4 = 0 in the combustion chamber equation

for the combined theoretical model (178) which shows that the modulus

must approach a value 1.0, while the phase angle A approaches zero degrees.

Critical examination of the transfer function data at each

chamber pressure shows noticeable scatter in two ranges: very low frequency

(60 to 75 cps) and middle frequency (120 to 180 cps). The low frequency

scatter arises from two major causes, e.g., poor signal-to-noise ratio in

the electrical signals and a magnified effect of transients within the rocket

motor. The electrical difficulties stem from the fact that the flow rate

(and hence pressure) oscillations are directly proportional to frequency in

a constant-displacement modulating system such as the one employed herein,

Thus., even with the largest pistons consistent with the design features of

the modulating unit, strain gauge pressure pickup outputs in the low fre-

quency range are of the order of 1j-millJAvolt, rom.s. Since the minimum

noise level obtainable in the electrical transducing and transmitting net-

works is approximately 1/10 millivo-t, the signal-to-noise ratio in this

frequency range is no greater than 5, while at the highest modulating fre-

quency it may be as large as 30. Also, because the majority of electrical

"noise" disturbances are produced by 60 cps operational equipment in the
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range and cannot be eliminated by filtering. The secondary source of low-,

frequency difficulties arises from the fact that small changes in flow modu-

lating conditions resulting from piston heating and cooling or from seal

leakage, which require a finite number of operating cycles to oecome sta-

bilized, will extend over a longer period of time during low frequency

operation thean would be consumed at the higher frequencies. For this

reason, the transient amplitude and phase playback records consistently

show much longer stabilizing transients and more serious variations during

running at low frequency conditions.

The scatter of these data and their departure from a smooth

curve in the middle-frequency range is evidence of another serious complexity

in the experimental program. A series of pre-run, cold flow tests with

varying modulating frequency revealed the existence of certain "resonance"

areas where interaction is thought to occur between the pulsations in

pressure and the presence of cavitating venturis in the flow lines. Com-

parison tests using both single and muLtiple-hole venturis isolated the

probable source of this resonance and stressed the importance of obtaining

the minimum possible bubble size. However, even with the 7-hole venturi

employed, two major areas are found where the existence of pulsations re-

duces the average, or steady state, flowrate by as much as 8)6. These areas

vary with line pressures and are different for the two propellants; but in

general their effects are most predominant in two ranges, one from 100 to

150 cps, and the other from 160 to 200 cpso These two adjacent ranges over-

lap in the two feed lines at the 600 - psi chamber pressure level and hence

necessitate a revision of the feed system configuration for obtaining re-

liable data in this area of frequen-yo Su . P change has not. been made in

the present investigation, since data In this range are not essential for
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construction of asymptotes in the calculation procedures anticipated at the

time of testing.

Although the steady state flow rate deficiencies can be overcome

by a simple increase in feed line pressures during middle-frequency operation,

the resonance condition introduces serious effects in transient data which are

not readily eliminated. These effects appear in either one or both injector

pressure oscillations in the form of severe distortion of the wave shapes

from their desired sinusoidal contours. The distortions are caused by the

presence of large-amplitude harmonics of the fundamental flow-modulatin;

frequency, as is evident from Figure 63, in which the fuel injector pressure

fluctuation has been played back from the tape recorder through a sonic

analyzer, and the oscilloscope face of the analyzer photographed during three

separate sweeps of the cathode ray beam. In this figure both amplitude

and frequency of the signal are shown on logarithmic scales, and the funda-

mental oscillation produced by the flow-modulating unit occurs with full-

scale amplitude at a frequency of approximately 140 cps. The troublesome

harmonic in this case appears at a frequency in the vicinity of 600 cps with

an amplitude which is an appreciable fraction of the fundamental. This full-

spectrum photograph also shows the presence of very high-frequency turbulence

"noise" as well as the stray electrical noise in the range of 60 cps pre-

viously discussed. However, both these latter disturbances are relatively

small random phenomena, while the large harmonic is repeated quite closely

for the three separate sweeps photographed. A closer examination of the

relations between fundamental and harmonic signals is possible from the

"center frequency" photograph of the same fuel injector pressure trace shown

in Figure 64, In thise case, a central frequency of 350 cps has been used

to locate the trace on the screen, and a linear frequency scale of + 250 cps

is employed on both sides of the center point. The fundamental frequency is
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544 cps. The linear scale also employed herein for amplitude indicates that

the harmonic is approximately one-fourth the size of the primary oscillation

and again is shown by the presence of three distinct sweeps to be highly re-

peatable. The extreme distortion caused by this fourth harmonic is illustra-

ted in Figure 65a by the oscillograph record of all three pressure perturba-

tions during a portion of this run. In this case, the oxidizer injector

pressure is undisturbed, and the fuel resonance condition is also reflected

in a slight distortion of the chamber pressure trace. A number of examples

also exist in which harmonic oscillations are present in the oxidizer trace

singly, and a few in which both injector pressures are distorted. In all

cases, however, the resonance effects appeared in the same ranges of fre-

quency in which the aforementioned steady state flow rate decreases were

observed, namely between 100 and l5O cps and between 160 and 200 cps.

The technique of selective electrical filtering is applied to all

test data to eliminate the effects of high frequency combustion and turbu-

lence noise (as previously mentioned in the discussion of data reduction

methods ), and it might be expected that such "low-pass" filtering might be

employed to overcome the harmonic distortion so evident in this middle-

frequency range. However, the validity of this filtering application is de-

pendent upon two conditions: the perturbations must be small in comparison

with the fundamental oscillation so as to be considered definitely second

order quantities, and the frequency of occurrence of these randon distur-

bances must be sufficiently high so that a large number of such oscillations

will exist and hence effectively cancel each other over the space of one

cycle of flow modulation. In the case of the harmonics described, neither

of these conditions is satisfied. The amplitude is too large to be neglected

in a linearized analysis, and the fourth harmonic frequency is too close

.\,
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to the fundamental to be considered cancellatory over any appreciable portion

of a modulating cycle° Thus9 as shown in Figure 65b, although the filter

action successfully removes the wave distortion caused by the presence of

harmonics, in so doing it shifts the phase relationship between midpoints

or peaks of the distorted and pure waves and alters the root mean square

anplitude to such an extent that the resulting data are meaningless.

The alternative of analyzing the actual wave form by Fourier

methods and including harmonic contributions to the fluctuating pressure is

inconsistent with the fundamental premise of linearized oscillations of

negligible second order or higher frequency terms, on which the entire

analysis of the combustion chamber is based. It becomes evident, therefore,

that test data in which such large harmonics exist are invalid, and one is

obliged to attempt to obtain acceptable points in the narrow "borderline"

range between 150 and 160 cps if a complete frequency spectrum is to be

accomplished.

Several test runs within this range were performed at each chamber

pressure level, and the resulting traces from one such run are shown in the

"raw" and filtered oscillograph records of Figure 66. The appearance of the

unfiltered pressure oscillations of Figure 66a indicates that only second

order harmonic effects are present; and on the basis of these observations,

all such runs in this frequency range which meet the aforementioned accepta-

bility criteria have been considered reliable and employed for further calcu-

lations. The evident scatter of the transfer function data of even these

carefully selected border points, however. emphasizes the severe effects of

resonance interactions and leads one to a more careful examination of the

filtering action0  Comparison of the phase relationships between unfiltered

and filtered traces in the border frequency test seen in Figure 66 with those

of a typical valid high frequency run as presented by the oscillograph records

I
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in Figure 67 show that the presence of even small harmonic components is suf-

ficient to invalidate data points within this frequency band, since the filter-

ing process increases the apparent value of XF by about 5 degrees. Such

comparisons further stress the unreliability of visual observation of wave

forms as a criterion for acceptability and demonstrate the necessity for

more objective methods of selection, such as the use of a sonic analyzer on

all transient datao

It is evident, then, that valid results for transfer function

parameters probably exist only at low and high frequencies and that the curve

shapes, as presented, must be determined from data in these two ranges only.

The choice of points in the low frequency range must be weighted by the

known behavior of these curves at zero frequency, since their scatter is

notably large. However, the large signal-to-noise ratio and freedom from

harmonics of high frequency points produce a much higher degree of repeata-

bility and hence a more reliable average Yalue in this portion of the

spectrum.

Pertinent data for calculation of drug coefficients and velocity

correction factors required as inputs )6 the second and third computational

stages are summarized in Table V, while the straight-line segmented curves of

velocity distribution, determined from five-point axial pressure surveys with

final velocity corrections, are shown graphically in Figures 37s 38, and 39.

Results of numerical integrations of the droplet dynamics equation with pre-

determined drag coefficient values are presented as liquid vplocity distri

butions superimposed upon these figures. Subsequent integration of the

inverse of liquid velocity yields a value of theoretical total time lag at

each location representing the time spent by a droplet in reaching that point.

These calculated total time lag distributions are plotted for all three

o/
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chamber pressure levels in Figure 40.

Values of the time lag parameters, e f,',n ,an d

calculated by the second and third procedural stages for both computation

methods previously described are listed in Tables VI - A, B, and C, and are

plotted as functions of frequency in Figures 41 through 58. The figures are

grouped according to the parameter calculated, with curves for three chamber

pressures resulting from one procedure followed by similar curves for the

alternate procedure. The gas residence time parameter differs in the two

procedures, since the overall residence time, 6, is the unknown determined

from the first procedure; and , the fractional length following the

average space lag, is considered as the unknown in the second., Imaginary

portions of the' complex solutions for 7 and Fr obtained by the second

procedure are observed to approach zero magnitude as the modulating frequency

is increased, as may be verified by plotting the data of Table VI, However,

since these imaginary quantities .do not contribute to the selection of as-

ymptotic values as inputs to the succeeding calculation stage, plots of their

variation with frequency do not appear among the figures°

The overall gas residence time results e3), calculated from the

approximate equation of procedure #1, appear as plots over the frequency

spectrum in Figures 41., 42., and 43. Scatter in these values essentially

reflects similar scatter in the transfer function modulus 9, to which the
calculation is primarily sensitive. Nevertheless, the more reliable data at

high frequency approach nearly constant values of &, and this parameter

clearly reaches an asymptotic value within the available rainge of modulating

frequency. Asymptotic values are noted on the curves as 0.958, 0.945, and

1.063 milliseconds, respectively, at the three mean chamber pressures of 301,

423, and 590 psia° Although these times are certainly of the order of magni-

tude to be expected on the basis of physical reasoning, they are consistently
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smaller than the values of 1.6 to 2.0 milliseconds derived from calculated

chamber gas velocities and employed in procedure #2, a discrepancy which

casts some doubt upon the validity of the method of selecting these as-

ymptotes.

Figures 44 through 46 present the variation with frequency of the

real component of the space lag parameter , representing the fraction of

chamber length downstream from the so-called combustion "front" as calcu-

lated by procedure #2. One notes that the scatter in these results is much

less pronounced, even in the middle frequency range, than in the correspond-

ing residence time values of procedure #1. Careful examination of the

equations of this second procedure show that solutions for the real portion

of the quantity . are relatively insensitive to scatter in the transfer

function modulus 9 , since variations in this real part merely change the

angle of a complex vector whose length is primarily determined by the value

of R and the chosen value of9 in the dominant term Solutions for

the imaginary portion of, , however, must satisfy the length requirements.of

such a vector and hence are highly sensitive to scatter in R results* At high

frequency, this scatter is much less pronounced, and the imaginary portion

of becomes definitely smaller and more regular, enabling one to deal with

only the real portion in choosing a reliable asymptote. The distributions

presented for this parameter clearly indicate such an asymptotic behavior within

the obtainable modulating frequency range, and values for the chosen as-

ymptotes are noted on the curves as 0.715. 0.750, and 0.980, increasing with

chamber pressure. These values agree closely with the estimates of 0.735,

0.835, and J000, selected from velocity distribution measurements and employed

in procedure #1.

Values of the average total combustion time lag, . , calculated

from the approximate equation by both procedures are tabulated in Table VI

N
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A, B, and C. These solutions occur as phase angles in the product formto and

are thus primarily sensitive to the magnitude of the transfer function phase

angle . Since the distributions of this parameter exhibit only slight

scatter, the total time lag variations with modulating frequency form rela-

tively smooth curves. However, these curves do not become sufficiently flat

at higher modulating frequencies to enable one to choose asymptotic values

with any degree of reliability. Although these straightforward frequency

spectra have been used with some success in previous calculations to obtain

values of total time lag which appeared well within expected physical and

chemical orders of magnitude, their inadequacy in the present calculations

is evident in Figures 47 through 52, in which the total time lag is plotted

against the reciprocal of modulating frequency. In these graphs, the as-

ymptotic values required for the third stage of calculations are represented

by the intercept of the curve with the ordinate where 1/f is zero, that is,

where the frequency becomes infinitely large. It is obvious from these plots

that the range of modulating frequency possible under the mechanical limita-

tions of existing equipment is not sufficiently high to justify extrapolation

of the calculated time lag values over the large space from the present

minimum reciprocal frequency to zero, in spite of the fact that the curves

are relatively flat in the range in which valid points have been determined.

These conditions lead one to a critical examination of existing

results and underlying equations for some additional evidence of the behavior

of the curves in their high frequency range, Initially, it is observed that

because of the sine-cosine form of real and imaginary equations containing the

angle 40i4, an indeterminacy of + 2)iT(v o, i, exists in the solution

for this quantity. However, observation of the values of the transfer

function phase angle and a careful study of the behavior of the approxi-

mate combustion chamber equation at low and high frequencies in the form of
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a vector diagram (this method of solution to be discussed later in more de-

tail) indicates that the angle V -must begin with zero magnitude at zero

frequency and cannot exceedd , which is iess than I radians throughout the

modulating range encountered herein. Hence solutions for ejOr7- are treated

as positive and negative first quadrant angles only, with negative solutions

arising from the approximate form of equation employed as well as from

scatter in the first stage calculations for R and * Values of

thus range from very small positive to equally small negative numbers, and

the use of logarithmic plotting techniques to extrapolate to high frequency

becomes meaningless. Further examination of the approximate equation shows

that the slope of the curve of/ with frequency approaches an asymptotic

value which is numerically related directly to the desired value of r

however, the existing scatter is too great and frequency range again too small

to justify extrapolation for the measurement of such a slope.

These considerations indicate that in spite of its limited range

of validity, the reciprocal frequency plot remains the most promising method

for presentation of total time lag data for extrapolation to an asymptotic

value. Rewriting the approximate equation in terms of this recrocal value

and investigating its behavior at very high frequency, one finds that the

slope of the versus 1/f curve should approach a negative value of 0*25

as the frequency becomes infinitely large. Therefore, the extrapolated curve

must be drawn in such a manner as to have this small positive slope at its

intercept on the ordinate. Constructing such a smooth curve for each of

the distributions presented, one obtaihs intercept values of the average

total time lag as presented on the curves, e.g., 0.25, 0.17, and 0.11

milliseconds at mean chamber pressures of 301, 423, and 590 psia, respec-

tively. Because of the similarity in distributions obtained from the two

calculation procedures and the uncertainty of such large extrapolations, it



126.

is impossible to distinguish between the two values at any one chamber pressure,

and these choices represent the best possible average for both procedures,

The unreliability of the asymptotic method is further emphasized by the dif-

ference in order of magnitude between these values and those reported in

some previous investigations where the best choice of asymptotes from

straightforward frequency plots are approximately 1/2 to I millisecond, which

are of the order to be expected from purely physical and chemical reasoningo

Final time lag parameters, namely the pressure sensitive portion

of the total time Lag and the interaction index relating this sensitive

portion to the pressure, are computed in the third stage of calculation from

the complete combustion chamber equation, using asymptotic values of total

time lag and the gas residence time or space lag parameter. Because of the

uncertainty in the choice of asymptotes discussed above and the similarity of

results from the two procedures in the second calculation stage, it will

suffice here to present and discuss the third stage results from either pro-

cedure. More realistic values of gas residence time and relatively smooth

variations in the space lag parameter dictate the choice of procedure #2;

and the computed values of interaction index n and sensitive time lag

for this procedure are presented over the modulating frequency spectrum at

each chamber pressure in Figures 53 through 58.

These final calculations are extremely sensitive to scatter in the

transfer function parameters t and , and for this reason, the unreliable

points throughout the middle frequency range have been omitted. Additional

evidence of the importance of such scatter is given by the existence of

negative solutions for one or both parameters, particularly in the low fre-

quency range uhere both R and exhibit considerable variations as pre-

viously discussed. Since negative time lags or sensitive time lags much

greater than the total are both physically impossible, solutions in these
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categories cannot be considered as valid results in themselves but only to

the extent that they contribute to an average value. As has been pointed

out, the transfer function data at higher frequency show the minimum of

scatter; hence average values of interaction index and sensitive time lag

are probably best determined in this frequency range. Such arithmetic

averages have been computed and indicated on the curves and are tabulated,

along with the asymptotic values employed in their solution from the results

of the second stage calculations, in Table V11.

Additional doubts as to the validity of these results arise from

the variation of both parameters with modulating frequency. Because the wave-

travel time throughout the chamber is much shorter than the period of one

cycle of flow modulation, conditions in the combustion chamber may be con-

sidered as quasi-steady with regard to chemical and thermal equilibrium. and

variations of modulating frequency within the relatively small range possible

may be expected to have no significant effect upon the values of these time

lag parameters. The fact that such variations do, in fact, exist, is pri-

marily due to the sensitivity of these calculations to the choice of as-

ymptotes in the preceding calculation stage. This sensitivity has been in-

vestigated more closely for a particular data point by selecting a number of

values for the V'" asymptote and computing the magnitude of both 71 and

for each value0 The extreme variation in interaction index for even modest

changes in asymptotes is illustrated in Figure 68 for a high frequency point

(241 cps) at 300 psia whose calculated values of R andA both appeared reliable.

Two additional attempts have been made to account for the fre-

quency variation and scatter in these results on the basis of existing

transfer function data. In the first of these attempts, the best possible

smooth curve is constructed through the R and A points, and curve values at

regular frequency intervals are observed and employed with asymptotic total.
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time lags to obtain "M and V results. These calculations are simplified

by neglecting mixture ratio variations which are seen from Figures 34, 35,

and 36 to be small and essentially random in nature. The frequency spectrum

resulting from the 600 psia calculation is shown in Figure 69, where it is

seen that elimination of the scatter in R and has led to consistently

positive solutions for both 77 and . However, with the chosen asymptote,

both parameters vary over an order of magnitude range or greater within the

span of available modulating frequencies.

The second attempt mentioned is based upon an inverse calculation

in which average values of all four time lag parameters are treated as con-

stants over the frequency range encountered, and the complete combustion

chamber equation is employed to determine the distributions of R andd which

would be required to produce such constant values. Figures 70 and 71 show

the results of these calculations for all three chamber pressures. Note that

in all cases the required values of both transfer function parameters are

appreciably smaller than the values actually obtained and also that the re-

quired curves exhibit much less change throughout the frequency range than

appears in the actual curves of Figures 28 through 33.

The pressure dependence of each of the parameters is indicated in

the curves of Figures 59 through 62. Values of gas residence time calculated

from the best available thermo-chemical data and measured pressures and mass

flows which are employed in procedure #2 show a slight decrease with in-

creasing chamber pressure, while those values obtained from the best possible

choice of asymptotes in procedure #1 are essentially constant within experi-

mental scatter. The space lag parameter exhibits the expected increase

with chamber pressure, indicating that combustion is concentrated closer to

the injector face as chamber pressure rises, Correspondingly, the average

total time lag of burning particles decreases as the combustion processes are
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accelerated by higher chamber pressure. Behavior of the final two parameters,

interaction index and sensitive time lag, is too uncertain in the present

calculations to Justify any authoritative statements concerning their changes

with chamber pressure, and in both cases the best straight line average has

been drawn. Both total and sensitive time lags are presented on log-log

plots, the slopes of which represent gross values of interaction index over

large variations in chamber pressureo These gross values are not expected

to agree closely with the average calculated at any one chamber pressure be-

cause of the quasi-steady temperature conditions under which the instantaneous

value of n is calculated for each pressure. Thus, the interaction index, de-

fined herein as instantaneous rate of change of an energizing rate function

with pressure, contains a contribution from the rate of change of the func-

tion with temperature multiplied by the ratio of small temperature changes

to small pressure changes. In the case of oscillations in pressure around

an average value, this ratio will be that of the adiabatic relations be-

tween temperature and pressure. However, between two different steady state

values of chamber pressure, it will be merely the average slope of the equi-

librium flame temperature curve drawn over the range of pressures encountered,

Note that if the energizing rate function is not sensitive to temperature,

that is, if the time lag "preparation" processes do not change their rates

appreciably with temperature, then the contribution of this term to the in-

. teraction index will be negligibly small, and the gross and instantaneous

values of 7- should agree very closely. This discussion of variations in

the interaction index is presented in detail by Crocco and Cheng in Ref-

erence I.

" I From the above observations of (a) questionable distributions of

transfer function data because of uncertainties in the middle frequency

range, (b) existence of physically impossible solutions for two of the time
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lag parameters, (a) large variations of these parameters with frequency,

(d) discrepancies between required and actual transfer function distribu-

tions, and (e) the requirement of excessive extrapolations in a range in

which mechanical limitations prevent obtaining data, one can only conclude

that with the present theoretical framework and existing experimental equip-

ment and techniques, the two-stage calculation procedure based on asymptotic

behavior of an approximate form of the combustion chamber equation is not an

adequate or satisfactory method for obtaining valid time lag parameter re-

suits. Since the entire procedure hinges upon the use of reliable distri-

bution of transfer function data, one might naturally suggest that an

obvious alternative to the asymptotic method is the use of a form of least-

squares statistical fit of the unknown time lag parameters to existing trans-

fer function calculations. However1 such an analysis must logically begin

with an attempt to normalize these data into the form of regular distribu-

tions by correlation of the rather scattered points with small variations

in mixture ratio, chamber pressure, propellant temperature, etc., before the

shape of such curves can be treated with the degree of certainty required

for a meaningful statistical fit. The complexities of this involved treat-

meat are too great to be Justifiable in the present investigations; hence

a number of simpler alternatives to the asymptotic method of solution are

attempted.

Alternate Calculation Procedures

The methods selected herein as alternatives to the two-stage

asymptotic solutions described previously all involve attempts to solve the

complete combustion chamber equation directly with simplifications and

iterative corrections derived from order of magnitude analyses. Basically

the calculations are a much simplified form of the "best statistical fit"

method in which modulating frequency is treated as an independent variable*
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Then, following the general assumption of procedure #1 of the former analyses

the position of major heat release, i.e., the average combustion space lag,

is considered a known quantity from steady state gas velocity measurements,

with the remaining four time lag parameters treated as unknowns. Separating

real and imaginary parts of the single complex equation, one obtains two

real equations in four unknowns, with the fifth variable, modulating fre-

quancy, to be chosen at one's discretion on the basis of reliability of trans-

fer function data in the various frequency ranges. Assuming the time lag

parameters to be constant over the available modulating frequency spectrum,

one may then write the two real equations at each of two discrete fre-

quencies, producing a system of four equations in four unknowns which can,

in principle, be solved directly without recourse to asymptotic or approxi-

mate methods. However, these equations are not straightforward algebraic or

trigonometric relations but are rather involved combinations of the two forms

which are not amenable to direct analytical solutions. Therefore, an order

of magnitude investigation of the various terms is performed for the purpose

of simplifying the solutions.

The relative size of each of the terms in the combustion chamber equa-

tion and their phase relationships are illustrated by the vector diagram of

Figure 72. Here the four unknown time lag parameters are assigned typical

values which might be expected on the basis of physical reasoning in order to

furnish an idea of the importance of the terms containing them. The velocity

distribution correction term has been neglected, since its contribu-

tion is never greater than 1% of the value of R, even at maximum modulating

frequency. Also the corrections for mixture ratio variations do not appear

in the diagram, since they are comparatively small in all cases and essen-
II

tially random in distribution over the frequency spectrum. 'he importance

of modulating frequency in any order of magnitude observations is obvious
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from the diagram, since frequency-dependent terms which are negligibly small

at low frequency in comparison to constant terms may become sizeable and

definitely not negligible at high frequency. For this reason, the vectors

are constructed and identified at two typical frequencies, a low value of

approximately 59.7 cps and a high value of four times that amount, or about

239 cps.

A great deal of information concerning the requirements for solu-

tions and their sensitivity to distributions of R and /i may be obtained

from such a diagram. First, one notes that if physically real, i.e., posi-

tive, solutions for the total time lag and gas residence time are to exist,

the value of R must always be greater than 1.0 and that of / must be

greater than zero. Also, since the imaginary vector - and the

angle w2; both increase regularly and are directly proportional to frequency,

the two transfer function parameters must also increase regularly and mono-

tonically for the existence of solutions to even the approximate equation.

One notes further that the angle (,-O ) increases monotonically with

frequency in the diagram. Hence, the requirement of constant values of

and r ? implies that the angle A must always increase faster thaniow.;

that is, that the slope of a curve ofA vs.0) must always be greater than

within a finite range of modulating frequency. Following such reasoning

further, it is apparent that if all four time lag parameters, 4s F, v ,

and 2 , are to remain constant, then only one distribution of the transfer

function quantities A and is possible.

In the actual case, of course, one must deal with the inverse pro-

blem of treating experimental distributions oft? and1, to determine satisfac-

tory values for the time lag parameters, and there is no certainty that con-

stant values, or perhaps even real values.. of these parameters will result.

Thus, although a solution for a sort of average value of each of the
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parameters can be obtained from the aforementioned treatment of two separate

frequency points, the question of the constancy of these values over the fre-

quency range can be answered in this method only by dealing with a number of

such pairs of points at various intervals along the frequency spectrum. In

the present investigation, valid data do not exist over this entire spectrum,

and one is limited to obtaining only this sort of average values in two areas

of frequency. However, the variation of these results with frequency is a

very significant matter, since, in effect, it determines the validity and

applicability of the theoretical representation of a total time lag made up

from the sum of a sensitive and an insensitive portion as well as the

linearized interaction function whose rate of change with pressure forms the

index 77 . Thus, it is essential in any future investigation that precise

transfer function data be obtained over the full range of possible modulating

frequencies.

Some additional useful information may be derived from the vector

diagram. The indeterminacy of the quadrant of Ofr mentioned in the dis-

cussion of the asymptotic calculation method is resolved by referring to the

diagram and noting that the angleA -&O always lies in the first quadrant for

finite values of R. Then, since experimental values ofd vary between 0 and

5 radians in the frequency range considered, the unknown angle4Y .must

also lie within the first quadrant. A comparison of the sizes of the vectors

and ~ G 5) clearly shows that the basis of the ap-

proximate equation used previously is a valid one, since the length of the

former is never greater than the magnitude of 7 awhile the latter may in-

crease without limit as W increases. It is also apparent that what has been

termed the third stage calculation for the paramters - and E7 will be

extremely sensitive to scatter in the values of .e and A . once e and

-, asymptotes have been chosen$ for relatively small changes in / and A
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will require corresponding changes in 7 and which represent much

larger fractional values of these two paramters. Also, since the rotation
of the vector '(/. is determined solely by the magnitude of , a

change in the angle (-eo will be reflected primarily in the value of

required for a solution. Hence, the magnitude of t and the distribu-

tions of both W and 7 with frequency for givenhe and4 curves depend

heavily upon the choice of the asymptotic

The influence of small mixture ratio fluctuations is not shown

in the diagram, but their importance is obvious if one notes that the length

of the R vector and its rotational angler are directly affected through

multiplication of the quantity Rel by a quantity equal to 1.0 plus the

complex mixture ratio term

which is proportional to fractional variations in mixture and to the slope

of the mixture ratio-temperature curve. Because the effects of mixture ratio

on the time lag parameters are unknown and unaccountable in the theoretical

model, it is important that the contribution of this expression be kept small

in comparison to 1.0 by controlling instantaneous mixture ratio within very

narrow limits. The actual value of this correction term in existing data

ranges from about + 0.02 to + 0.12 and is random in both size and direction

over the frequency spectrum. Thus the influence of mixture ratio on solu-

tions of the present combustion chamber equation is definitely of secondary

.1 ' importance. However, as yet no evaluation has been made to determine whether

these small changes in mixture can appreciably alter the form of the time lag

and gas residence terms contributing to the chamber response and, hence, the

measured values of transfer function parameters. For this purpose a large

- -
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number of test data have been selected with mixture ratio variations both

within and slightly exceeding the prescribed limits. and plots have been

constructed of variations in R and 1 with steady state as well as fractional

mixture ratio. The behavior of these plots appears to be completely random,

and one may conclude that within the small range of mixtures considered accept-

able for calculation purposes, there is no evident first order correlation be-

tween transfer function and mixture ratio scattering0

Having observed the behavior of the combustion chamber equation

over the range of modulating frequency and having determined the relative

importance of the various terms thereinp one may now proceed to direct cal-

culation of the aforementioned average values of all four time lag parameters

by simultaneous solutions of the equation at two discrete frequencies* For

this purpose the complete equation is re-written in a simplified functional

form as:

(185)

=- 

(

where:

S - - velocity distribution correction

=~ - 9 = velocity distribution correction

- mixture ratio correction

-- ___ e secondary gas residence contribution,

If one now writes Equation 185 at each of two separate frequencies,

W, and Wg, , transposes terms, and forms the ratio of the two equations,
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then, assuming all time lag parameters independent of frequency, the inter-

action index is eliminated, and one obtains the following single complex

equation in three unknowns:

(F\(S"Y(l0 /-e "&A

(186)

From previous reasoning the order of magnitude of the sensitive time

lag is expected to be approximately 0.2 milliseconds; hence, the angle O

is at most of the order 0.3. As a first approximation, then, the exponen-

tial. term e may be expressed as:

e

and the right hand side of Equation 186 becomes

~- (M

Defining a frequency ratio k =
-/" and combining terms, one obtains,

as a first approximate form of equation, the following:

which is considerably simplified over 186 by the disappearance of the term

as a result of the approximation of the right-hand side ex-

nthe unknown still exists in the left-ponential ratio. Nevertheless, th\nnw 9
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hand side of the equation as a part of the expression CA, h, defined

following 185. An order of magnitude analysis in the discussion preceeding

this derivation has shown that a normal value of this function is about

0.05, which is of the order of terms neglected in the approximation of the

exponentials. Thus, to the same order of accuracy, one may assume:

It has also been pointed out previously that the term i( ., the cubic

velocity correction term is always less than 0.01 and may therefore reason-

ably be neglected in this simplified analysis. Introducing these approxima-

tions into 187, one obtains a much simplified form of the original equation

as follows:

in e en , .,

in which the unknown, occurs only on the left-hand side, and the second un-

known, 4 , only on the right. In principle, this complex equation, which

can be separated into real and imaginary parts to form two equations in two

unknowns, can be solved directly for both unknowns. Actually, however, the

existence of multiple angles ce, t , 6 ' , and Q4z j , t 2

prevents elimination of either one of the unknowns from the two equations,

and graphical or numerical methods of solution are required. Even for the

judicious selection of k 2 or 4, in which the double-angle trigonometric

relationships may be used, elimination of either unknown requires two suc-

cessive squaring operations, resulting in a fourth-order trigonometric

equation which again can be solved only by numerical or graphical methods.

The choice of frequency ratio k is therefore arbitrary and is based solely
upon the reliability of transfer function values at the points in question.

Such graphical solutions of Equation 188 have been attempted
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for all three chamber pressures, and typical results are shown in Figures 73

and 74o For ease of calculation of the rather complex functions(4W , the

multiplying constant of the term containing these functions is normalized to
a value of 1.0 by multiplying all terms by the quantity (2./). The left

and right sides of the resulting equation are then treated as individual com-

plex vectors, and their real and imaginary parts are computed from the avail-

able R and A data at the chosen frequency points for a series of trial

values of and The end points of the vectors representing the two

sides of the equation then form two curves which proceed in the directions

indicated for increasing n and 9 Only positive values of these two

parameters have been chosen for plotting purposes, since negative time lags

or gas residence times are not physically possible. Two such graphical pre-

sentations are constructed at each chamber pressure with a single value of

, 4 / , and a and two different choices of , A/ , 4 , and,

hence, / . In all cases actual calculated values of the transfer function

parameters were employed rather than average quantities from a smooth curve

distribution. The existence of solutions to Equation 188 is shown on the

graphical construction as intersections between the two curves, and in five

of the six cases attempted, no intersection existed, as is seen for one such

plot in Figure 73. The single case providing a solution is one of the two

chosen from 600 psia chamber pressure data and is shown in Figure 74. The

intersection is seen to occur for a value of of 1.05 milliseconds and for

a E value of approximately 0.1 milliseconds, which is very nearly the value

chosen from the asymptotic extrapolation of the second stage results in the

original calculation method.

One is hardly justified in drawing any general conclusions con-

i cerning the existence of real solutions for time lag parameters on the basis'

of such a very rough approximation to the full combustion chamber equation.

',\
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Tfierefore, a second iteration in the graphical process is performed by in-

clusion of the mixture ratio and gas residence time functionjq§,jFi

the left side of the equation. Since the correct value of is not known

until solutions are actually obtained, it suffices to choose trial values

of this parameter and calculate the correction to the left side for each of

these, The values chosen cover the range of realistic magnitudes from zero

to two milliseconds, and the revised curves including these correction terms

are illustrated in Figure 75 for the aforementioned single case in which a

solution to the uncorrected equation exists. In this figure the curves have

been expanded in the neighborhood of possible solutions, but comparison of

the values of at the points of intersection with those corresponding to the

corrected curves of .he left side of the equation shows that agreement be-

tween these two values cannot be reached within the positive .portions of the

curves; hence, no solution to this corrected form of the equation is possible

in the only case which provided an uncorrected intersection. Similar calcula-

tions performed on each of the other cases at values of equal to zero and

two milliseconds show that the inclusion of these corrections in all cases

shifts the curves of the left side even farther from an intersection. Thus.,

no solutions at all exist to this second-approximation form of the equationo

The next logical step is a third iteration based on a correction

to the exponential ratio on the right side of Equation 186. Consideration of

second order terms in the series expansion of this expression produces:

where:

Z g/



and the third approximation to the exact equation has the form:

One notes that departure of the exponential fraction from its

original representation as a simple frequency ratio introduces an additional

complication to the graphical solution in the form of a linear term in

on the right side of the equation. The effect of this term on the behavior

of the curves is clearly shown in Figures 76 and 77, where the left side is

again presented for trial,% values of zero and two milliseconds, respectively.

The size of the complex correction (X ,9 ) is, of course, directly depend-

ent upon the trial values chosen for the sensitive time lag 9 in computing

this correction. The three sets of curves presented for each value are

calculated for choices of Y of 0.1 0.5j, and 1.0 mi.liseconds. One observes

that an increase in the value of , and hence in the importance of the cor-

rection term, increases the distance between the curves representing the two

sides of the equation, thereby shifting them even further from a possible

solution.

The results of one further investigation into the possibilities

of graphical solutions are presented in Figures 78 and 79. As has been

pointed out previously, calculations of all four time lag parameters are

extremely sensitive to the values of the transfer function parameters

and d , and the figures illustrate graphically the very important effects

of changes in these quantities. In Figure 78, the magnitude of R1 is varied

from 1,0 to 1.25 around its experimental value of 1,086, with the value of

fixed at its experimental value of 38.1 degrees. Although no inter-

of 3.1 Athouhno nter
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sections exist in this case for the uncorrected curves presented, the obvious

importance of RI is shown by the large shift in the position of the curves

for relatively small changes in this quantity. Similarly, the phase angle 4
is varied from 35 to h5 degrees at fixed value of R= 1.086 in Figure 79.

Again the existence of an intersection is heavily dependent upon the size of

this transfer function parameter, and it is seen that a solution appears pos-

sible in the uncorrected case for a value of in the neighborhood of 35

degrees. Although this is not the measured value of the possibility of

obtaining a real solution is deemed interesting enough to warrant the applica-

tion of correction terms to this particular case. These corrected curves

for 0 and 200 milliseconds and for = 0 and 0.1 milliseconds are

shown finally in Figure 80, where it is observed that an intersection appears

possible for R1 = 1.086 and,4 = 35°, with resulting approximate valuts at the

intersection of -2l.5 milliseconds, Z -.Y 0.1 milliseconds, and o 0.05

milliseconds. The fact that a realistic solution can be reached with only

small changes in the angle suggests that the choice of a very low fre-

quency point as one of the two for this calculation scheme may be an unfortu-

nate one because of the extreme sensitivity of the computations to transfer

function quantities in this frequency ranges

Conclus ions

The foregoing discussion of experimental results and initial in-

vestigations into the possibilities of alternate calculation schemes leads

one to certain obvious conclusions concerning the validity of results presen-

*i ted, the applicability of various calculation procedures, and the require-

ments for any more detailed future research.

Mechanical balance and lubrication problems of reciprocating or

eccentric rotating machinery severely limit the possible range of modulating
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frequency, and one cannot expect to extend this frequency much beyond its

present scope with any reasonable modifications of existing equipment or with

any practical alternate design of equipment at the existing scale. Then,

since the two-stage asymptotic calculation procedure outlined herein demands

an order of magnitude increase in modulating frequency before it can be

legitimately applied and its results be extrapolated with any degree of con-

fidence, it is apparent that one must abandon this method of analysis in

favor of one which can better express the relationships of the theoretical

model within the present frequency range. With the insight into the be-

havior of the equation gained from the above preliminary attempt at alterna-

tive solutions, one may conclude that the most promising method appears to be

a detailed statistical analysis of the transfer function data with an eye toward

correlation of the scatter in these data with variations in rocket motor oper-

ating conditions heretofore neglected, and the application of a least squares

form of data reduction process to these correlated quantities to obtain the

best possible values of four time lag parameters from two simultaneous

equations. This least squares analysis might well take the form of a modi-

fication of the iterative "two-point" calculation procedure as presented

above but applied to a series of pairs of points along the complete modulating

frequency spectrum of the transfer function curves.

No matter what choice of calculation method is made, the evidence

presented herein makes obvious the need for reliable transfer function data

over the full scope of possible frequencies, not merely over short inter-

vals at a few discrete points on the curve. Thus, in the two-point method

discussed, the sensitivity of calculations to small changes in low frequency

points suggests that similar computations should be performed with middle

frequency quantities if the results are to be treated with any degree of con-

fidence. Furthermore, the values obtained by any statistical means must be
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treated as averages and should therefore be computed over the full range of

the independent variable, in this case modlating frequency. Also, as has

been pointed out., the only valid check of the theoretical model's represen-

tation of time lag parameters as linearized functions of the form described

in deriving the combustion chamber equation is an observation of the con-

stancy -- or departure therefrom -- of these parameters over the full fre-

quency range.

This requirement of full frequency data suggests a number of

experimental modifications and supporting analyses. Chief among these is the

need for a detailed investigation of the interaction phenomenon between

pulsating flow within the feed system and the two-phase vapor-liquid con-

dition produced by the presence of cavitating venturis in the propellant

lines. The aim of such an aialysis is to either completely eliminate this

interaction or to alter the design of the system in such a way as to shift

the resonant frequency range of the modulating unit - venturi combination outside

the limits available from existing equipment. A straightforward one-dimen-

sional analysis of these quasi-steady flow oscillations, accompanied by

realtively simple experimental observations with a liquid of known vapor

pressure, density, and elastic properties, might be expected to yield suf-

ficient insight into physical conditions within the present feed system to

accomplish the desired aim through design changes of minimum complexity. In

addition to the resonance problems, uhich are of primary concern only in the

middle frequency area, one must also attempt to improve the accuracy and re-

peatability of data points in the low frequency range. The first step in this

regard should logically consist of increased efforts to obtain appreciably

higher signal-to-noise ratios for pressure pickup responses to flow modulations,

and such increases are most likely to be the result of improved electrical

shielding and isolation from "noise" disturbances throughout the entire

i- -
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transducing, transmitting, amplifying, and recording system. One must also

examine the response time characteristics of all data reduction instruments

in this lower frequency range to ascertain whether corresponding times of

readings on amplitude and phase playback records are actually comparable with

regard to the instant at which the original phenomena occurred. Thus, if the

response times of the two playback systems were widely different and if

either one was of appreciable length, as may be the case with the servo-

operated phase recorder, the return to electrical equilibrium following a

small change in rocket operating conditions might appear at a much different

time on the phase playback record than on the amplitude, even though both

original signals were faithfully recorded on the magnetic tape. Since the

production of a step function or other known change in phase of a pre-deter-

mined size and at a fixed, pre-selected frequency is not a straightforward

matter ith the relatively poor quality of existing phase measuring standards,

this response determination is considerably more involved than might appear

at first glance. An interesting alternative suggested by Crocco consists of

obtaining average phase and amplitudes over a short time span by continuously

replaying a single short loop of the magnetic tape occurring at any desired

point during a run. Such continuous playback would obviate the need for any

response determinationo

Although these changes in amplitude and phase relationships

during playback are of greatest importance at low frequencies, they neverthe-

less appear in varying degrees at all frequencies and may therefore reflect

actual changes in pulsing flow conditions and their ensuing chamber responses

during starting transients and at early reading times within runs. It is

therefore very important to determine that flow and combustion equilibrium

conditions have been reached at a time before data observations are made, or

the calculations of transfer function parameters cannot be expected to be

- 7
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repeatable over a number of runs at any fixed frequency. Establishment of this

equilibrium condition at the earliest possible moment in the present limited-

duration rocket runs is thus essential. The good repeatability of steady state

data presented herein for a large number of runs indicates clearly that these

values of chamber pressure, flow rates, and thrust are reached sufficiently

early to guarantee the existence of equilibrium in average conditions at all

reading times. Hence, one need concern himself only with the problem of

achieving similar constancy of fluctuations in the two propellant flow rates

at the prescribed values necessary to produce constant instantaneous mixture

ratio., with the expectation that these conditions will result in more nearly

constant amplitude and phase measurements. In the existing flow modulating

unit, the creation of small flow leakage, particularly in the very low tem-

perature liquid oxygen feed system$ because of frictional wear of the sliding

seals on the pistons causes a gradual change in capacitance of the system

which often fails to reach an equilibrium condition within the run duration.

This capacitance change cannot be controlled or compensated for during

running and results in data of questionable value because of the inevitable

variation in amplitude and phase and, consequently, mixture ratio0  For this

reason the major modifications in equipment presently planned for additional

experimental tests center around the design of a flow modulating unit with

improved piston seals and with servo-controlled piston stroke and phase rela-

tionshipso It is expected that such a design will be capable of varying the

amplitude of oscillations in one propellant line and the phase angle between

the two propellants in a continuous fashion during rocke. runs so as to pro-

duce very nearly constant values of these parameters, resulting in an order

of magnitude smaller perturbations of instantaneous mixture ratio.

Notwithstanding the obvious shortcomings of the two-stage, asymptotic

calculations procedure and the inability of present equipment to produce

I\
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reliable results over the full frequency range. the general experimental method

for determining combustion chamber response and its associated transfer

function parameters is seen to be a realtively simple and definitely practical

one. The order of magnitude of present results for these paramters and the

general shape of the curves describing their variation with frequency are

shown to be valid merely by the existence of solutions for the time lag para-

meters from the approximate equation applied over the entire frequency range.

Although sensitivity of the final calculations to low frequency data scatter-

ing and unfortunate resonance problems in the middle frequency interval pre-

vent one from obtaining adequate verification of the validity of the theoreti-

cal model's representation of time lag parameters, it is seen that the experi-

mental techniques for producing near-sinusoidal flow oscillations, the trans-

ducing, recording, and playback instrumentation for measureing these oscilla-

tions, and the methods for reducing these primary measurements to the form of

useful transfer function parameters are all valid procedures capable of

supplying data of sufficient accuracy in the present scale of operation to

warrant at least preliminary time lag parameter computations. Also, it is

apparent that with only minor modifications in analytical methods and labora-

tory equipment, satisfactory results may be obtained for the final time lag

quantities to justify their use in a critical examination of the simplified

representations of the theoretical model.

The calculation of transfer function parameters as an intermediate

step in the overall determination of the more involved time lag phenomena

offers an additional advantage in its range of applicability, for no matter

how accurately the proposed theoretical model describes the actual complex

combustion process, these transfer function data still represent reliable

and useful experimental information to any rocket design engineer. Whether

his problem be one of combustion chamber instability, feed system oscillations,

i.

, I
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propellant .line pressure fluctuations, mechanical structural vibrations,

chamber and system recovery times after sharp changes in flow, analysis of

serVo controls in feed lines, or merely determination of starting and shut-

down transients, the engiheer must determine the response characteristics

of the chamber-injector configurationj and the techniques described herein

offer a practical, straightforward method for obtaining linearized transfer

function data for just such applications.
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RI2haNCE DATA FOR DROPLET DIAMEThR DETERMINAT ION

SOURC. MAN"
OF DATA ORIFICE INJE~CTOR Sl I4~ DROPiLT

AND DIAM. 6P (LBs/Fr3 ) , DIAM.
REFERENCE NO. (IN.) (PSI) (MICRONS)

Schmidt (o ) .018 75 62.4 .0198 73.2

Schmidt (40 ) .018 100 62.4 .0229 49.8

Schmidt (40) .018 125 62.4 .0256 46.5

Lee (39) .028 1730 54.7 .1576 24.4

Pineton .035 140 62, .0534 (28)

Princeton 140 62.0 .0643 (30)
Injector
Princeton

Ineto 052 3140 61.9 .07195 (32)

.J



I tTABLE II - A

STEADY STATE; DATA FUR 300-PSI OPrATINi.G L VEL

TIE
RUN L& e THUUST TOTAL F AIJ

NO. READING (PSIA) (PSIA) (PSIA) (Li S) (.LsIS/SLa) (13Y

A-177 6.15 270 376 338 215 0.994 1,389 5108 207

A-187 11,80 279 377 346 214 1.021 1.305 5043 205

A-189 6.20 279 377 348 220 1.006 1.329 5233 202

A-189 8,20 279 377 348 220 1.015 1.350 5171 204
A-201 8.65 275 366 345 218 1,003 .1.274 5023 203

A-201: 10,80 275 366 345 218 1.003 1. 27 4 5023 203

A-328 6.60 298 477 422 250 1.091 1.282 5232 204
A-328 8.90 298 477 422 250 1.083 1.280 5307 203

A-330 6.10 303 497 422 244 1.122 1.294 5351 207
A-330 8.35 303 497 422 245 1.124 1,289 5112 207

A,-349 11.20 304 513 456 247 i.i11 1.319 5077 205

A-352 10.62 306 510 447 254 1.099 1.303 5233 201

A-380 6.70 310 502 459 250 1.120 1.369 5518 203

A-380 8.80 308 500 459 250 1.120 1.359 5444 205

A-380 10.90 310 498 459 251 1.116 1.349 5525 202

A-385 6.20 308 495 444 255 1.103 1.311 5529 200
A-385 8.30 308 495 444 255 1.109 1.323 5491 202

A-385 10.50 303 485 439 255 1,103 .1.320 5358 204

A-388 7.50 313 473 448 251 11109 1.345 5697 199

A-388 9.50 314 474 449 252 1.112 1.339 5694 199
A-388 11s50 312 473 48 219 1.110 1.335 5635 200

A-392 7.18 308 485 44 2 3 1.127 i.342 5348 206

A-392 9.21 308 485 4144 252 1.129 1.336 5320 206

A-392 11.30 303 476 439 2L8 1,121 1.329 5216 219

A-399 6.35 308 510 h56 256 1.113 .,344 5488 203

A-399 8.50 308 510 457 257 1.113 1.3h4 5488 203

A-399 10,60 308 499 459 258 1.119 1,357 5L48 206

S~.----



TABLE II- B

STEADY STATE DATA FuR 450-PSI UPaIIaATNG LLVUL

TIME - -

RU U THHLST TUTALGAiC. CAI.
NO. READING (PSIA) (PSIA) (PSIA) (LL-S) (LBS/SBG) (,By

(SECS) WT.) ('9a) (lT/SLO)

A-231 4.39 389 532 515 3.41 1.467 1.132 4664 203
A-259 7.18 401 557 522 352 1.566 1.351 4701 221
A-259 9482 406 557 522 353 1.564 1.355 4817 218
A-260 7,20 423 567 532 370 1.564 1.345 5213 209
A-260 9.87 415 567 532 370 1.561 1. 340 5030 212
A-263 6.91 422 547 522 358 1.553 1.331 5238 209
A-263 9.56 401 547 522 358 1.551 1,336 4768 218
A-273 5.92 400 522 509 293 1.502 1.297 4994 212
A-273 8.52 400 5k2 509 316 1.494 1.295 5045 210
A-274 7.31 400 537 514 342 1.475 1.323 5262 208
A-274 9.62 400 537 514 342 1.473 1.327 5244 208
A-302 5.82 413 547 523 351 1.456 1.186 5449 193
A-44o 6.92 430 581 540 385 1.562 1.351 5433 205
A-440 8.42 430 581 540 385 1.560 1.348 5W0 206
A-440 9.92 430 581 540 385 1.558 1.345 5128 205
A-442 6.00 435 586 557 391 1.598 1.367 5339 208
A-442 8.00 435 586 557 391 1.600 10370 $330 08
A-442 10.00 L35 586 557 391 1,601 1,371 5324 208
A-449 6.85 45 581 547 387 1.603 1.371 5311 209
A-449 6.35 .435 581 547 387 1.603 1.371 5311 209
A-449 9.85 435 581 547 386 1.603 1.371 5311 209
A-469 6.02 433 597 567 388 1.605 1.340 5215 209
A-469 8.10 429 587 565 390 1.611 1.335 5057 212
A-469 10.20 437 592 567 390 1.608 1.327 5252 208
A-472 5.90 434 597 562 386 1.606 1.358 5251 209
A-472 8.00 434 602 565 387 1.605 1.36o 5256 209
A-474 7.25 422 609 557 375 1.627 1.358 4833 218
A-474 9.35 423 609 55" 376 1.618 1.383 4946 217
A-474 11.45 423 609 557 376 1.618 1. 383 4946 217

A-475 8.50 433 614 564 390 1.602 1349 5235 215
A-475 10,50 433 64 564 391 1.602 1.342 5125 205
A-479 8.70 428 617 557 378 1.627 1.331 4929 214

A-479 10.90 428 617 557 379 1.624 1.343 4962 214
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TABLE II - C

STEADY STATE DATA FOR 600-PSI OPEPATING LEVEL

TIME - 0 o
RUN iP 1 ofw THRUST TOTAL F CALC. CALO.

NO. READING (PSIA) (PSTA) (PSIA) (LBS) (LBS/SEc) (13 ",
(sECs) 1W.) (AR) (-r/sVc)

A-411 8.36 622 770 744 551 2.233 1.351 5575 204
A-411 9.00 601 773 747 552 2.233 1.333 5175 211
A-419 4.90 586 725 705 545 2.235 1.365 4948 218
A-420 5.10 586 717 709 531 2.229 1.368 4993 216
A-420 7.23 597 732 709 532 2.227 1.362 5172 212
A-420 9.40 602 732 714 533 2.229 1.364 5263 211
A-432 6.31 574 727 734 520 2.220 1.366 4826 220
A-432 8.30 583 717 724 521 2.222 1.368 4973 217
A-432 10.30 579 727 719 521 2.224 1365 4891 218
A-433 8.85 599 727 734 541 2.216 1.369 4516 228
A-433 10.50 601 730 727 538 2.216 1.365 5335 211
A-459 5.95 610 808 754 568 2.233 1.362 5381 208
A-459 7.65 610 808 754 569 2.233 1,362 5381 208
A-461 5.30 582 762 724 528 2.234 1.352 877 218
A-461 7.00 581 752 714 527 2.231 1.356 4879 218
A-461 8.70 581 762 724 527 2.228 1.348 4882 218
A-488 6.72 577 728 708 528 2.172 1.382 5140 214
A-488 8.75 589 728 708 528 2.179 1.381 5321 2.1
A-488 9.90 589 728 708 528 2.179 '1.381 5321 211
A-489 5.82 572 722 707 525 2.183 1.381 4999 217
A-489 7.88 582 722 707 525 2.185 1.378 5163 224

A-489 10.00 582 722 707 525 2.185 1.378 5163 224

-I



TABLE III

SU1oXARY OF AVURAGE STWADY STATh PARADMLT.T1 S

NOMINAL i.'uM AL NOMINAL

PRESSURE DATA: =300 =;450 =00

1, Rocket chamber pressure, f (psia) 01 423 590
2. Fuel injector pressure, ; (psia) 23 541 722
3. Oxygen injector pressures "6 (psia) 462 574 711

4. Fuel injector pressure drop, ,-& _(psi) 122 118 132
Oxygen injector pressure drop, aE0 (psi) 161 151 151

PROPELLANT DATA:

1. Fuel specific gravity .798 .796 .768
2. Fuel flow rate, 2-. (ius/sec) .467 .672 .939

3. Oxygen flow rate, wrd (lbs/sec) .622 .900 1.276

4. Total propellant floirate, (ibs/sea) 1.089 1.572 2.215
6 Mixture ratio, F =  

o/'.1.33 1.34 1.36
~tue rtio P~(#/ft 3) 62.1 62,0 6.

6. Mean propellant density, A ( 1 20 61.9

7. Mean injection velocity, V (ft/sec) 105 1i0 i01

PER2ORMANCE DATA:

1 Rocket motor thrust, (ibs) 238.2 368.7 534.6
2, Characteristic exhaust velocity, C (5490 5503 5530

3. Specific impulse, I C (se) 218.7 23145 241.4
, Thrust coefficient1.31 1.417 .1.473

COMBUSTION PARAJOTERS:

1. Combustion chamber temperature c (* C ) 5450 5515 5625
2. Combustion gas density, a (#/ft 3 ) .1087 .1526 .21093. Combustion gas molecular weight, ;* 21.25 21,22 21.61 j

4. Combustion gas viscosity, (poises) 6.43xi0 4  6.48xi0 4 6.53x10

5. Mean specific heat ratio, Y 1,213 1.211 1.210

6. Chamber sound velocity, C'. (ft/sec) 3945 3945 3965

7. Temperature-mixture ratio slope L/4, (o) 2362 2)482 2285
8. Chamber exit gas velocity, Wis (ft/sec) 204.0 209,2 214.3

MOTOR GEOMETRY:

1. Injector orifice diameter (inches) .035 .042 .052

2. Nozzle throat diameter (inches) .875 1885 .885

3. Combustion chamber length (inches) 4.016 4.016 4.016



TABLE IV - A

TRANSFER FUNCTION AND MIXTURE H ATIO RESUITS-300 PSJA

TIM MODU-
RUN OF LILTING

No. READING FRi4UEN0Y
(SES.) (ops) (DEGREES) (DEGREES)

A-177 6.15 99.2 2.134 58,1 1.002 8.2
A-187 11.80 99.5 2.031 54.5 0.890 1.2
A-189 6e20 148.8 2.857 70.3 1.064 -8.8
A-189 8.20 148.8 2.925 70.0 1.6 -12,4
A-201 8.65 174.5 2.653 76.2 0.905 8.4
A-201 i0,.80 174.5 2.561 77.6 0.923 9.6
A-328 6.6o 65.5 1.130 37.1 1.076 0.4
A-328 8,90 65.5 2.424 30.4 0.861 0.6
A-330 6.10 65.5 1.975 18.5 1.050 -2.6
A-33 8,35 65.5 2.739 18.6 1.019 -2.3
A-349 U,20 162,0 1.241 78.6 0.956 -9.8
A-352 10,62 156.4 1.116 71.6 1.091 4.4
A-380 6,70 211.3 1,857 67.8 0.963 -4.4
A,%-380 8.80 211.3 1.813 67.5 1.000 -4-3
A-380 10.90 211.3 1.852 67.7 1.054 -4.3
A-385 6.20 219.0 1.844 72.6 0.933 -2,8
A-385 8.30 219.0 1,879 72.8 0.949 -0.8
A-385 10,50 219.3 1.927 72.7 1.061 0.6
A-388 7.50 242.5 2.046 77.1 0.934 -2.1
A-388 9.50 242.5 2,015 78.7 0.951 -4.3
A-388 11.50 242.7 1.872 79.3 0.932 -7.2
A-392 7.18 243,0 2.157 82,1 1.031 2,9
A-392 9.21 242.7 2.115 83.5 1.064 0.4
A-392 11.30 242.5 2.114 87.6 1,090 1.9
A-399 6.35 241.0 2,222 80.2 0.902 -8.9
A-399 8.50 241.0 2.155 77.3 0.952 -4.6'
A-399 o.6o 241.0 2.138 77.9 1.067 2.7

I' . .



TAMEJ IV - B

TRANSFIER FUNCTION AND NIXTItl Iu RJ, ULX6-.450 PSIA

ITIE MuDU-

RUN 011 AdPIC A,
NO. MULDI)NG FH1EOuENCY

A-231 4.39 236,5 2.062 53.3 1,095 -8.6
A-259 7.18 154.4 2.321 45.4 1.007 0.3
A-259 9.82 15I.4 2.517 45.5 1.026 2.0
A-260 7.20 150.2 3.907 3.7 1.072 -8.3
A-260 9.87 150,4 3.678 31.3 1,015 -3.8
A-263 6.91 155.4 3.521 42.4 0.979 1.1
A-263 9.56 155.4 3.219 42.9 1.003 t.6
A-273 5.92 198.7 1.783 72.2 0.927 ll.4
A-273 8.52 199.1 1.574 67.8 1.089 1.7
A-274 7.31 198.9 1.701 68.7 1.015 10.0
A-274 9.62 198.9 1,696 69.4 1.013 3.3
A-302 5.02 84.7 3.996 23,8 1,131 5.3
A-440 6.92 244.8 2.003 75.1 1.oo6 -6.3
A-440 8,42 244.8 1.995 75.6 1.020 -5.5
A-440 9.92 2114.8 2.039 74.5 1.001 -4.2
A-442 6.00 246.7 2.039 75.6 1.079 -2.6

A-442 8.00 246.7 2.042 75.o 1.113 -2.1
A-442 10.00 246.7 1.980 68.7 1.094 -15.0

A-49 6.85 221,1 1.748 76.7 1.170 6.9
A-449 8.35 221.1 1,690 79.3 1.273 0.5

A-449 9.85 221.1 3.628 78.9 1,263 2,5

A-469 6.02 68.1 0.961 37.9 1.040 3.0
A-469 8.10 68.1 0.911 38.8 1.082 -2.6

A-469 10.20 68.1 I,008 36.6 1,061 -4.8

A-472 5.90 121.4 1.356 53.8 1.092 -1,3
A-472 8.00 121,4 1.349 55.8 1.016 -1.5

A-474 7.25 174.2 1.765 66.5 0.97 -7.7
A-474 9.35 174.2 1.723 64.4 0.915 -7.4
A-74 11.45 174.2 1. 715 66.5 0. 954 -5.4
A-475 8.50 171.0 1.630 65.1 0.980 1.4

A-475 1050 171.0 1.61,8 65.0 0.958 1.8

A-479 8.70 174.6 1.717 65.2 0.988 -12.2

A-479 10.90 -74.6 1.710 66.1 0.975 -11.5

. ... . ... .'



TABLE IV- C

TRANSFER FUNCTION AND MIXTURE RATIO RLSUiTS-600 PSIA

TIME RbDO-
RUN OF IATING
NO. READING FREQUENCY - ,.

sEcs. (CPS).(...S (DEDG) I
A-411 8.36 76.7 1.174 61.2 1.377 -9.4
A-411 9. 00 76.7 1.032 51.4 0.5890 10.7
A-419 4.90 91.5 1.107 51.7 0.852 0.8
A-420 5.10 93.2 1.224 54.7 1.339 -8.5

A-420 7.23 93.2 1.199 56.3 1.127 -9.4
A-420 9.40 93.2 1.199 58.6 1.194 -8.4
A-432 6.31 205.6 2.115 79.9 0.910 -0.2
A-432 8.30 205.8 2.345 81.8 0.943 -2.0
A-432 10.30 205.8 2J65 81,2 1.025 -5.5
A-433 8.85 221.3 i.495 81.3 1.247 -1,7
A-433 10,50 221.3 2.178 77.9 i.147 -1.6
A-459 5.95 246.0 2.070 77.6 1.039 1.9
A-459 7.65 246.0 2,008 78,1 1,071 6,2
A-461 5.30 247.8 2.327 82.3 1.001 -10.4
A-461 7,00 247.6 2.325 82.4 i.o68 -7.7
A-461 8.70 247.6 1.991 83.0 1.093 -7.9
A-488 672 68.8 0.973 39.3 1.102 6.1
A-488 8.75 68.8 1.093 42.8 1'112 8.7
A-488 9,90 68,8 1,024 43.3 1.166 90
A-489 5.82 67.8 1.011 37.5 0.989 3.8
A-489 7.88 67.8 1,086 38.1 0.965 5.0
A-489 10.00 67,8 1.117 36.2 1.009 6.8

I.



TABLE V

SUMMARY (F AVhRAGE DATA FOR VELOCITY CORRECTION FACTORS

=3O1 =423 -590
INJECTOR DATAt PSIA PSIA PSIA

1e Injector orifice diameters (in.) .035 A02 .052
2. Average propellant density (lbs ft3) 62.1 62.0 61.9
3e Average injection velocity, (ft/sec) 105 110 101

DRAG COEFFICIENT DATA

1. Mean droplet diameter, 4 (in.) .0011 .0012 .0013
2. Average combustion gas density,,fg (1bs/ft 3 ) .1087 .1526 .21093. Average gas viscositysg (micro-poises) 643 648 653 r
4. Droplet Reynolds' number at inlet, Re 242 38.6 52.4
5. Drag coefficient proportionality oonstant,4& 54.8 66.5 76.7
6. Non-dimensional drag coeffioient, .0289 .0297 .0295

VELOCITY DISTRIBUTION CALCULATIONS.

1i Non-dimensional chamber exit gas velocity Z, .0517 .0530 .0540
2. Non-dimensional exit liquid velocity Ar, .0348 .0382 .0411
3. Non-dimensional final total time lag, Vr, 39.97 34.12 29.92
4o Dimensionless integral rT, =IdJ/- 18o24 15.52 13.66
5. Dimensionless integral '490.7 359.7. 279.3

CALCULATED CORRECTION FACTORS:

1. Effective burned gas residence fraction, s. 0.735 0.835 1.000
2. Gas residence correction factor, a. 2.42 1.89 1.48
3. Total time lag correction factor, & 3.755 1.617 0.829
4. Total time lag correction factor, A 3  0.480 -0.414 -0.807

i '
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TABLE VI - A
i- / -

TIME LAG PARAMETER CALCULATIONS - 300 PSIA

PROCEDURE #I PROCEDURE 1/2

- I QI

RUN MODU- _ IrREL IAI
NO. LATINQ NI IL-RA MAGI- tr yfr r

FREQ. SECS. SECS J NA Y MILLI- MILLI- MILLI-

(CPS) SECS ShCS SECS.4

A-177 99.2 2.861 0.213 1.589 2.070 -0.53 o.56 1,11.o -0.64
A-187 99,5 2,52 -0.061 2.326 1.377 -0.35 0.32 2.75 -0.28
A-189 148.8 3.238 -0.063 1.008 1.873 -0.20 0.48 1.60 -0.79
A-189 148.8 3.409 -0.1334 1.003 1.431 -0.36 0.50 1.75 -0.84
A-201 174.5 1.786 0.312 0,877 0,h61 -0.37 0.10 -0.98 0,22
A-201 174.5 1.719 0.362 0.88 0.315 -0.40 110. -1.79 0.17
A-328 65.5 1.196 0.351 3.164 1.180 -0.23 0.13 1.10 0.32
A-328 65.5 4.088 -1.384 4.029 2.957 0.06 1.24 6.56 -0.57
A-330 65.5 4.551 -1.604 4.251 6.308 0.50 1.].3 -6.1) -0.66

A-330 65.5 12.592 -2.293 4.432 5.086 0.50 3.16
A-349 162.0 0.435 0.668 1.293 1.727 -0.27 0.50 0.99 0.86
A-352 156.4 0.203 0.847 0.938 1.496 -0.32 0.53 1.25 0.82
A-380 211,3 0.914 0,.147 0.835 1.3.96 -0.03 0.2h -0.2) -3.41
A-380 211.3 0.897 0.3.55 0.777 1.255 -0.03 0.24 .0920 -3.77
A-380 211.3 0.982 0.147 0.734 1.089 -0.03 0.21 -0.29 -2.40
A-385 219.0 0.813 0.216 0.803 1.124 -0.08 0.28 0.03 ----

A-385 219.0 0.842 0.227 0.751 1.072 -0.10 0.25 0.06 --
A-385 219.3 0.978 0.228 0.783 1.024 -0.11 0.18 0.00
A-388 2L2,5 0.865 0.213 0.678 1.019 -0.02 0.24 0.00

A-388 242.5 0.874 0.221 0.696 1.092 -0.11 0.25 0.00
A-388 2L2.7 0,756 0:234 0.758 1.174 -0.10 0.30 0.014
A-392 243.0 0.987 0.308 0.732 0.862 -O,11 0.16 0.39 1,34
A-392 242.7 1,011 0.298 0,777 0.955 -0.3.0 0.16 0.30 1.66
A-392 242.5 1.061 0.321 d.904 1.027 -0.24 0.13 0.43 1110
A-399 241.0 1.048 0,3.63 0.985 1.043 -0.10 0.19 -0.27 -2,20
A-399 241.0 0.992 0.180 0.753 1.067 -0.09 0,19 -0,18 -3.47
A-399 241.0 1.024 0.247 0.784 0.871 -O,14 0o.15 0.06 8.18

I:q



TABLE VI - B

TIME LAG PARAMETER CALCULATIONS - 450 PSIA

PROCEDURE #1 PROCEDURE #2
MODU- e 7 REAL IMAGI.

RUN 1ATING MIl~~- MILLI- REAL IMAGI- t~ Fr e
NO. FREQ. SECS. SECS. NAD MILLI- MILLI- MILLI- n

(CPs) SECS. SECS. SECS.

A-231 236.5 1.330 -0.08 0.843 0.958 0.14 0.12 -0.85 -1.03
A-259 154.4 2.046 -0.28 1.144 1.568 0.16 0.22 -2.19 -0.52

A-259 154.4 2.358 -0.32 1.104 1.689 0.18 0.31 -2.52 -0.54

A-260 150.2 4.643 -0.62 1.117 1.977 0.22 0.82 2.70 -1.30

A-260 150.4 4.159 -0,73 1.348 2.032 0.)40 0.72 -3.21 -1.18

A-263 155.4 3.674 -0.60 1.18 . 2.057 0.14 o.61 3.05 -0.92
A-263 155.4 3.330 -0.52 1.134 1.779 0.10 0.54 -3.11 -0.75

A-273 198.7 1.037 0.07 1.418 1.270 0.01 0.23 -0.36 -1.71

A-273 199.1 0.742 0.27 0.920 1.181 -0.07 0.26 0.40 3.76
A-274 198.9 0.958 0.13 1.110 1.657 0.01 0.24 -0.15 -3.94
A-274 198.9 0.800 0.25 0.790 1.628 -0.08 0.24 O.4l 1.57

A-302 84.7 9.849 -1.78 2.465 2.964 0.58 2.21 5.38 -1.68
A-440 244.8 0.947 0.16 0.653 1.244 -0.05 0.21 0.00 ----

A-440 244.8 o.946 0.17 0.614 1.220 -0.07 0.20 0.05 9.9
A-440 244.8 0.952 0.16 0.622 1.135 -0.06 0.20 0.03

A-442 246.7 0.974 0.20 0.770 1.073 -0.08 0.18 O.14 3.64
A-442 246.7 0.995 0.20 o.845 1.053 -0.08 0.17 0o,2 4.44A-442 246.7 0.992 0.20 0.847 1.056 -0.08 0.17 0.1.3 3.81

A-449 221.1 0.817 0.37 0.923 0.943 -0.20 0.21 0.91 0.70

A-449 221.1 0.873 0.36 1.044 1.050 -0.20 0.21 0.93 0.63

A-L49 221.1 0.873 0.37 1.025 1,003 -0.20 0.20 0.96 0.62

A-469 68.1 ---- 3.184 2.544 -0.29 0.61 3.83 0.22

A-69 68.1 ---- 3,431 3.014 -0.21 0.69 3.57 0.25

A-469 68.1 0.282 0.88 3.557 2.677 -0.05 0.45 2.42 0.26

A-472 121.4 1.035 0.27 1.395 1.144 -0.10 0.19 0.69 0.69

A-472 121. 0.9114 0.33 1.612 1.479 -0.15 0.24 1.04 0.48

A-474 174,2 1,127 0.09 1.577 1.289 -0,03 o.16 -0.33 -1.64

A-474 174.2 1.012 0.13 1.382 1.245 -0.04 0.20 -0.10 -6.13

A-14 174.2 1.03h 0.15 1.319 1.309 -0.06 0.19 -0.01

A-475 171.0 0.897 0.28 1,023 19129 -0.13 0.21 0.62 0.90

A-475 171.0 0.888 0.28 0.999 1.105 -0.10 0.24 0.64 0.87

A-479 174.6 1.158 0.08 1.719 1.493 0.00 0.17 -0.17 -1.15

A-479 174.6 1.116 0.11 1.651 1.72 -0.02 0.18 -0.30 -1.74



TABLE VI- C

TIME LAG PARAMETER CALCULATIONS - 600 PSIA

MODU- PROCEUR~jL~ROWbDURE #2
0 DU- REAL -IMAI.

RUN LATING ma'- M I- REAL IMAGI- r t7"
NO. I=R%. SkCS. SECS. Nf Mli.Ld- MILLI- MILLI-

(CPs) ... S. sos. ss.

A-.41 76.7 1.727 0.78 2.826 1.090 -0.74 0.04 -3.58 0.28
A-4ll 76.7 2.718 1.890 -0.84 0.61 5.80 0.24
A-19 91.5 0.551 0.77 2.655 1.668 -0.38 0.54 3.44 0.21
A-420 93.2 1.388 0.41 2.021 0 0.28 0 4.77 0.09
A-420 93.2 1.122 0.52 2.611 2.125 -0.31 0.19 4.58 0.11
A-420 93.2 1.319 0.62 1.926 2.600 -0.hO 0.17 5.26 O.i4
A-1432 205.6 1.072 0.32 0.975 0.896 -0.26 0.10 1.47 O.41
A-432 205.8 1.378 0.27 0.995 0 0.23 0 2.14 0.23
A-432 205.8 1.114 0.28 1.145 .0.718 -0.24 0.10 1.37 0.39
A-433 221.3 0.631 0.43 1.843 1.280 -0.22 0.26 0.94 0.89
A-433 221.3 1.34 0.21 1.128 0.518 -0.16 0.04 0.20 8.11

A-459 246.0 0.954 0.25 0.738 0.907 -0.13 0.17 0.88 0.56
A-4159 246.0 0.897 0.30 0.801 0.818 -0.16 0.17 1.o8 0.53
A-461 247.8 1.236 0.14 1.137 1.147 -0.12 0.09 0.29 1.19
A-461 247.6 1.300 0.17 1.203 1.518 -0.14 0.07 0.59 0.49
A-461 247.6 1.199 0.19 2.266 1.392 -0.14 0.11 0.63 0.58
A-488 68.8 0.534 ---- 2.968 2.110 -0.38 0.50 4.50 0.20

A-488 68.8 0.806 0.88 2.645 1.131 -0.57 0.17 6.59 0.12
A-488 68.8 0.939 0.84 2.416 0 0.57 0 7.01 0.12
A-489 67.8 ---- ---- .2.484 2.332 -0.31 0.53 3.99 0.20

A-489 67.8 0.534 0.83 3,313 1.812 -0.35 0.37 4.47 o.14
A-489 67.8 0.790 0.59 3.104 1.308 -0.31 0.22 3.83 0.13

I



TABLE VII

SUMMARY OF TIME LAG PARAMETER CALCULATIONS

I.
NOMIJAL NOI.AL NOMINAL

-301 4123 590
Parameter:. PSIA PSIA PSIA

1. Asymptotic overall gas residence
time, %0(milliseconds) 0.958 0.945 1.063

2_ Asymptotic fraction of chamber

downstream from position of average
space lag, 0 .715 0.750 0.980

Asymptotic mean total combustion
time lag, ' (mi-iseconds) 0.25 0.17 0.11

4 Average sensitive time lag, f (milli-
seconds) 0.08 0.05 0.4!

5, Average interaction indexj )7 1.0 0.71 0.34

I't
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APPE~NDIX A

DERIVAXION OF" NO?~z.l BUNDARY IQUATION

FU)R NUN-ISIANTMPIO LOCILlaTIONS AT ENTRANCE

The boundary equation for flow oscillat.ions at the entrance to thk

subsonic portion of the exhaust nozzle is derived from non-~steady., one-dimen-

sional. gas dynamics for a number of spez ific cases .i the referen:.es prev-utasly

cited. Tsien (ref.0 25) has considered the case of isothermnal fluctuations.,

dadU OrvLL%:U (rdfJ. 2u") h1d t-ALWIU(1U bII±j L~u ±ILtudkJ -.. ,'w L Ii.agi ZJau:uuiY

tions for arbitrary oscillations as well as a full-freqiency s-:lulion for the

isontropic case. In addition t.' these treatments.~ whirh are based 'upon R

linear velocity gradient along the axis of the subsonin pcrtion of the nozz.! e

Crocco (ref. 1.) has also shown the forms of terms in the low frequency se...6a

expansion for isentropic osclaJ9.aticns at the entranc:e to a nc.&Zle with any

general non-,linear velocity gradien+.e It, is the purpose of this derivatr~n 1-n~

extend the low frequency anal.ysis for a non,-ir.ear velocdty distribut ion '.0

include the general case of non- isentropic nsci2U~atio...-- The resulting equ.a c

in terms of velccity density,., temperatureP and entropy perturbations is tneD

transformed through t-hermcdynami- rcla4.icns and the equation of state i< a

form siitable for appliaticn d: xec.tJly as a boundary condition to the combusx

chamber in which T(he primary tzardablecs arc, 1re~oity or mass flow., presSur 4 "LL1,

entr opy.

Fo.Ulo~rng the notation of Cr c.one inay write perturbation equa.

tions in the fcrirt.

V -

T
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Then, if one considers a length variable, x , as the distance from the

entrance section along the subsonic portions of the nozzle, the equations of

motion for the gas (assumbing combustion has been completed within the chamber)

are written as:

The energy equation, expressing the constancy of entropy following

a given fluid mass, becomes:

(;A)

If one postulates an exponential time dependence for the perturbed

quantities such that:

(4A)

then the equations of motion are reduced to the following ordinary differential

equations:

- Z -

C, , "'t_ _
- GA'

~Ckx
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Where C is the localp steady state velocity of so)ud and where use has been

made of the ontropy relation from Equation 3A in the forms

or: (6A)

If one defines non-dimensional variables as:

ej C t.I

where: total length of subsonic portion of nozzle

C = velocity of sound at nozzle throat

- subscript indicating entrance conditions.

then the energy equation in steady state may be written asR

LJr? (3A)

and the equations of motion (5A) become:

(9A)

(1oA)
~ C/3 -''CA
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Substituting Equation 9A into 1OA and defining:

results in the single equation:

Since no analytical treatment of Equation 1JA is possible for general

, a solution for the case of low frequency oscillations may be obtained

by expanding the unknowns ;V and 0' in a series in (i ), confining the present

analysis to those terms of zeroth and first powers only of the parameter ( ,

Thus:

7,J 9 +(12A)

Before substituting these series expansions, one may reduce Equation 11A

to a second order equation in L7 only by dividing by the coefficient of the

V term, differentiating the entire equation with respect to _ , and

substituting the relation of 9A. Thus:

d .'%0 k/

a~~ L /3z-cj- T~ Las 4/ ~

V_ (13A)



Performing the indicated dIfferentiations. substituting the series

expansions of 12A, and neglecting higher order terms. one obtains an equation

involvijig only zeroth and first powers of (L/)as follows;

-L A P C ( 0( -e )

Equating the coefficients of terms of like power in on both

sides of the equation produces the two relations:

(o: A)

(a G \, a

_ L- WUr) LKI.

Equating th coficet of terms of lie(rino bt
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Equation 15A is a homogeneous linear differential equation of first.

order in and may be solved directly, yielding:

which is integrated again to produce the solution:

C7() C6
&. c'" - " j ) (17A)

However, the general solution for eo) must remain regular as w

approaches 1.0, that is, approaching the sonic throato Therefore:

Co 0
0.,,(0) = C C O. N -NC -.I/N'T (18A)

Therefore, equating the coefficients of terms of zeroth power in

(i) in Equation 9A,

or: (o

(19A)

The constant value of CN mustp cf course, be equal to the value

dl. at the entrance section, which is determined from thermodynamic relation-

ships (independent ofe ) to be:

(20A)

Then, substituting the series expansions for e and -/ into hA

and equating coefficients of zeroth power terms in L / , one obtains:

kr 5 L J ) Z . '7 0 ' - ) L r 'r '
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andq since ____

a U-r(21A)

Substituting the value of C  = e from 20A.,

or: or_ Co') e.
(22A)

Note also that since= constant al higher C1(9 terms

must be zero. Hencep
." '°-t r ('I( (07- C (f ' ' '

S o : ,e

(23A)

Returning. now, to Equation :16A and substituting the value of 7' one

finds:

(2)4A)



A-8

The solution of this equation. which is a first orderp non-homogeneous,

linear differential equation in may be determined in the same manner as

that of Equation 15A, giving: ' "  -I,

IJ _____t__._____ lk (25A)
____ U~ __ r ____ __ "x.r' d.

-(Y 00 -LLkr

The value of the constant, C a 3 must be chosen such that -

remains finite at 1. In order to determine C a , one may express

25A in fractional form3. thus:

Since the denominator becomes zero at 1 (w =), C. must

Yr i

equal zero in order that the numerator be zero. This leaves in

the indeterminate form 0/0 . Successive applications of L'Hospital's rule

produce:

I (26A)
3r +i / _ ,'--

t "~ ~_-

\~
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In this last expression the denom:inator is no longer zero, and the value of

__ _ may be evaluated, yielding:

( -~ \L~' \ L~ -(27A)

For monotonically increasing Lk (and hence w ). c' 0 . and

the expression is regular.

Having determined the value ofC.0 and satisfied the non-singularity

of at A = 1 for this value, one may now return to Equation 25A

and integrate directly (integration by parts on the right-hand side) to obtain

I (I I

'~(2 8A

The value of C-1 is determined by the boundary condition at th-

entrance, namely thatC<.-- . Hence, from Equation 23A,

00

Y! U) 'x tq
(29A

5Y ~ 7 JJxtr ) 1*j% 4t §0 J t
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Substituting this value of ' into the expression forc ,  in 2A gives:

_ -1 , - %/-iIA

0

The solution for now becomes merely a matter of substitution of derived

quantities, Referring to Equation 2A and rewriting gives (for terms of first

order in i/3 ).-

Dividing by the coefficient o and solving gives:

S(_ (31A)

Substituting Equations 30A, 25A 22kand 20 for~ 6 and

and." 20A --- '12

G respectively, gives:

___ 10 (3A

/

'./
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The complete solutions for a an are then (up to terms of first order

in A ):, V
0A Ce Y IU'

Wr I fe~j~A1LTLAi
a (33A)

and:

x ((34A)

Since the entrance conditions at the nozle form a boundary condition

f or the combustion chamber, it is necessary to determine E' and ~Ti~,which

are the values of 0:r(,t) and r,)for -,,= 0

Substituting %E 0 into Equation 33A produces the result previously

determined, eog., )

CL o.,- cy ,-

Q) \f _ z _ / _. _(o __,,...- _ _.,

Frrom ouation 34A, wh n 0, one obtainf

L U - L'"\K135A)
Frm oato ,,h =O n0otis
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It is convenient to apply this boundary condition in terms of 4

and E- rather than e , 9* s and E a The relating equations are

those of the perfect gas law and the previous equation for c_ :

_=O_'- 0'e_. (for small perturbations)

or: @e_ - c-&

and:

Combining these gives:

. Y(36A)

Substituting this value forGe--into 35 produces:

0 Ur

In terms of exit mass flow from the chamberp this relation is slightly modified;

thus: A_

(38A;



Employing the value of.V-- from Equation 37A, the expression fu- mass flow

fluctuation at the nozzle entrance becomes:

(3A

The two integrals, and , appearing in Equations

37A and 39A are completely determined by the geometry of the exhaust nozzle nd

the specific heat ratio of the combustion gases within the nozzle$ since flow

through the subsonic portion of this nozzle is assumed isentropic following

a fluid particle. For application in the combustion chamber equation) these

integrals are combined with their multiplying constant to form two non-dimen,

sional velocity parameters, 'ti and ! , defined by:

WC

(40A)

The order of magnitude of these quantities is illustrated by the

numerical example carried out for the particular exhaust nozzle employed in

the bipropellant rocket motor tests described previously in the text. This

is a double-conical nozzle with a circular arc contour at the throat section,

and has the following dimensions:

Entrance diameter = 3.00 inches

Throat diameter = 0.875 inch

Length of subsonic portion 1.974 inches

Half-angle of entrance cone 300

Circular arc radius at throat - 0.50 inch
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With this geometry, for combustion gases with an average specific

heat ratio in the subsonic portion of the nozzle of 1.20, the velocity para-

meters have the values:

W I = 8.078

= 0.24o
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APPENDIX B

METHOD OF SOLUTION OF VELOCITY
PlTLURBATION INTLCURA±4 PUATION

The zeroth iteration of the perturbation equation for axial distri-

bution of the amplitude of disturbances in gas velocity has been derived in

the refined theoretical analysis and appears as Equation 135 in the followir,

form :

€o j0

(135)

where the quantity D (x) is defined bys

and:

Here the velocity perturbation , appears as the unknown

on the left side of the equation as well as within the interior integral on

the right side of the equation. A solution to this integral equation by the

introduction of new variables in an integrated form was suggested by Crocco

and is presented in detail herein. The judicious choice of these new variables

transforms Equation 135 into a second order, linear, ordinary differential

equation in one of the unknowns which is amenable to straightforward solution,
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This solution is then transformed back into the original variables. resulting

in a simple expression for the zerOth iteration of gas velocity perturbations.

If two integral variables are defined as:

andt

Then the gas velocity perturbation may be expressed as:

and Equation 135 takes the form:

- T) (-X 4 rk (-, :;o_ dt)() - Y)

(2B)

Howevers from the definition of TVi

so that:

/ CX0
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Substitution of this relation into Equation 2B produces the following second

order differential equation in J-2) () t

which may be arranged in the form:

-A __P C__ - B)

This equation is considerably simplified by noting from the steady

state droplet dynamics relation (Equation 57) that-

Substitution of this expression into Equation 3B yields:

____ 
1 -r j ( )

-t J) (% .144,

The boundary conditions at the injector face, t , show that

o(') o) V Co)() " ) Qo).o andD( =c Z With these in

mind, Equation 138 may be integrated twice to give:

0 t ((5B)

Substituting this result into Equation 1.35 gives:

L~ ~ ~f ,k -O'," "(B)



One may simplify the quantity within brackets on the right side ol

Equation 6B. Thus, defining this quantity as ('x and integrating by parts,

one obtains:,

(7B)

The steady state droplet dynamics equation again furnishes a useful

relation, eag.,

so that: K

and Equation 7B reduces to:

83)

Inspection of the interior integral in the second term within the

brackets shows it to be an exact differential of the quantity - .,

so that Equation 8B becomes:

T- T N 4 ,
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I I

which is integrated directly to produce the simple result:

or:(9B)

Finally, substituting this value of C. (y into its proper place

within the brackets of Equation 6B, one obtains the desired expression for

the gas velocity perturbation (in the zeroth iteration) as given in Eqo l36@

Thus

K 00 (9B6)

Y V 0)(.) -r VA q ()(

(3.36 )
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APPENDIX C

THEORETD'ICAL CALCULATION OF PfUkSSURJL-FLOW PHASB
LAO IN THE I3IPRUPELLANT RUCKET M(ITOR INMkCTURS

The energy equation for one-dimensional, incompressible flow may be

expressed in the form:

between two stations (1) and (2), where

Sv = total kinetic energy enclosed between Stations (1) and (2.

= kinetic energy per unit mass at any one station.

= rmass flow rate.

= fluid density.

= pressure at any one station.

Expressing these quantities in terms of velocity, area, density, etc., gives,

and:

Since the fluid is incompressible,
1A .t "NZ VA, -"1A

So:

~JJP (A) ~ ~ A Aj

But:/ is a factor which is constant for the

system and dependent upon geometry only.

____ We may define it by K , giving:
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Also:

Substituting these into the original energy equation gives:

or.

Now, let:

where/& ,4r are time-dependent and

superscript bar indicates steady-states

Then:

For steady-state operation,A~j c jr = O , and.

Thus, dividing through byA3P/.P gives:t < 4r )r Al / AZ,
Since/1  rdiare small quantities, their squares and products may

be neglected, giving-

t_ _ _ +,4
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Now. let vary sinusoidally --A W-. t

Then: '

So: \44 AA t - -- M

or: / (4//h I- --l

An equivalent )ength3 leq., may be defined from steady-state kinet

energy, Thus:

So: leq. = /p vx1

and: Y- /,,A

Hence: t m* ~ /

The flow pattern in each bipropellant injector orifice is assumed as

follows (see Fig. C-i)

a) Spherical sink flow from ?,- to Z-" with center at (A).

b) Spherical sink flow from1: \~ to'iR with center at (B),

c) Uniform rectilinear flow from (3) to (4) through a circular

duct of radius

The previous equation for,/ukorna may be applied between station (4) and

In this case N/Ak= Q , sinceN\- O)Q" and the equation becomes:

T4Y~?A(sincee
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where:7 r is now the fractional oscillation in the pressure drop

between co and station (h).

In order to determine leq., one may first evaluate the kinetic energy

in the various regions of flow. Thus:

Region I (;2..O

-zo

Region II Q

00

and:

.jO9T'q C

4.P
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Region III ( Section 3 -

For the transition regions between I and II and between II and LL ,

it will suffice to find the average kinetic energy per unit mass and multipi

it by the mass contained in the region. Thus, in

Region IV (Between I and I)

(4

The volume contained in this region is the difference between a

hemisphere of radius R a and a spherical cap of radius R, of depth equal

to the distance from section (1) to (A).

This cap has a volume given by:

V cap:/l " , -=;i t/ , N e

But, h = ,cosaV = distance from (A) to (B)

so: V cap=;/5 i - ( - s - .

13.3 O ;.vS/
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Then V IV volume in region IV V hemisphere -V cap

Q- C_____

Then:_

A similar procedure may be applied to a fifth region, that, between

sections (2) and (3). Here the volume is that of a spherical cap. For this

regionj

L4-+
Then:4 0 C 0r~eI I 6

-~ ~4C

fi- 4
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The total kinetic onergy is then given by;

+o thtle.= z

-C4j

\ 01b

Now, the equivalent length is defined byz

~3

so that leq.

Ts: leq*

and, finally:

L -_ _
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From this expressionp leq. may be evaluated for all flow rates

(chamber pressures), from which the phase lag c;4 may be computed byt

~t~LA

For the bipropellant injector now in use 9 these geometric variables

are: 9 W = 4.ts

Then:

(\ cocI N-C' oC

Therefore:

These data are employed to find the equivalent lengths of the five

regions from the individual terms of the final equation. Values of the phase

lag vQ. are plotted for the different injectors as a function of frequency in

Figs. C-2 and C-3, where c4 is defined by

,-4r -
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APPENDIX D.,* SAME± CA"CWJATI0NS

The computation processes and magnitudes of numerical quantities in-

volved are illustrated by the following sample calculation. A typical data

point is selected with primary measurements givenp and successive steps in the

complete procedure for determining time lag parameters are listed. In each

step the detailed computation process is explained; this is followed im'~ediately

by the numerical example from the chosen data point. Steps are broken into

major groups as described in a previous section.

K Run No.: A-461 Run Date.- 6-17-56

Nominal _P: 600 psia

Nominal Frequency: 248 cps

I. Stage I Calculations

I A. Steady-state parameters

1. Read all photographed values, including time.

Example: Time 7.00 secs. = 602 psig

P = 730 psig Thrust =P = 530 its.

710 psig Pref. = 440 psig

2. Correct all photo pressure values by most recent dead-weight-test guage

calibration curves.

T; 0 = 752 psia Pref. = h55 psia

f = 714 psia

Fc = 581 psia

3. Correct photo thrust value from thrust calibration curve.

Ex. F = 530 lbs.

4. Mark all Speedomax recorder charts at time of reading, using cessation

of fuel flow to determine end of run and marker pen indications to

locate start. N

- .- ,I



D,2 4.
5. Record all net chart readings, subtracting the indicated chart zeros. 

Ex. F 7.77 divs.

P Lo .26 - 0.83 = 3.43 divs.

Pf = 5.60 - 1.68 = 3.92 divs.

PC = L.72 - 0.70 = 4.02 divs.

ox=.672 diys.

Wf= 6.76 dive.

freq. = 9.88 divs

6. Determine actual pickup value of thrust from calibration curve of chart

reading vs. actual load.

Exe. F = 527.1 lbs.

7. Determine oxygen and fuel flow calibration factors from known line frequency

I 'indications*

Ex. Ox factor = (60.0/4.99) = 12.01 cps/div.

Fuel factor - (60.0/5.00) = 12.00 cps/div.

8. Determine net frequency outputs of oxygen and fuel Potter flowmeters from

calibration factors and measured net flow indications.

. iEx Ox Potter freq. = (12.01) (6.72) = 80.77 cps

- Fuel Potter freq. = (12.00) (6.76) 81.12 cps

9. Otain oxygen and uncorrected fuel flow rates from Potter calibrations,
with density factors based on standard ethyl alcohol (sp. gr. = 0.783) and

liquid oxygen and thermal correction for 5 area contraction at liquid oxygen

temperature.

Ex. ox flow =m 1.284 lbs/ec.

Fuel flow = mf (uncorr.) = 0.947 lbs./sec.
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10, From measured fuel temperature and empirical hydrometer calibration urve,

obtain actual fuel specific gravity.

Ex. Fuel Temp.. = 860F.

Sp. Or. --0.794 - o000496 (Tfuel -6 4.40F)I

Actual fuel sp. g. = 0.7843

11. Correct fuel flow rate for actual specific gravity.

Ex. If= If (uncorr.) x sp. 0. 0.947 .783 0.947 lb.
0.783 u sc

12. Add fuel and oxygen flows to get total propellant flow rate.

EX* m total = 1.284 + 0.947 = 2.231 lbs/sec.

13. Divide oxygen flow by fuel flow to obtain weight mixture ratio.
• : OIF 1,2.84I7/ Z

Ex. r =0Q/F l 284 7 = 1.356

14. Determine run frequency calibration factor from line frequency chart

reading.

Lx. Freq. Cal. factor = (120/4.79) = 25.05 cps/div.

15. Obtain actual run freq. from net chart reading and calibration factor.

x. Freq. = (25.05) (9.88) = 247.6 cps

16. Select most recent pressure pickup-to-Speedomax calibration curve at

reference pressure observed during run. With this curve, determine net

across pickups during run from net chart readings.

Ex 4 (0o) = 3.43/.0127 = 270 psi

A(Pf) = 3.53/.0133 = 265 psi

4 (PC) = 4.02/.0730 = 551 psi
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17. Add corrected Prof. to these values (for differential pickups) to obtain

absolute pressures.

O P0 =  55 + 270 725 psia

Pf =h55 1 265 = 720 psia

PC 15 + 551 = 566 psia (absolute pickup employed)

18. Subtract photo from P0 and Pf to determine injector pressure drops.

Ex.: A P 171 psi

4Pf 133 Psi
'J

19. At run frequency measured, consult inertial phase lag curves for parti-

cular injector employed to determine standard phase lags.

Ex: c t., 247.6 cps = 12.000

I '( 1 T S247.6 cps = 1i.85°

20. Prom ratio of standard to actual flow rates, correct standard injector

phase lags.

SX_-= (l.O3) (12.00) = 12.990

I. = (1.0O5) (l1.85) = 12.440

B. Transient Data

l. Play back pre-run amplitude calibrations and run signals through net-

work described into Speedomax recorders. Simultaneously record 200-cps

taped timing trace with recorder marker pens. Mark all charts at time

of reading,

2. Read net values of all amplitudes, including calibrations, as R.M.S.

values from charts.
01V

k (Cal) = 8.47 diva. P0F 8.84 diva.
0

Ad
(Cal) = 8.45 diva. Pf 7.10 diva.

(s
PC (Cal) =8.46 diva. F~ = 7.40 diva.



3. Form ratio of run-to-calibration signals and multiply by known cali-

bration input amplitude to obtain actual electrical signal amplitudes

of pressure pickup outputs.

(8.84/8.-47) 5.656 =5.905 mv

Pf = (7.10/8.47) 5.656 = 4.751 mv
Pc = (7.4o/8.46) 2.262 = 1.979 my

4. Noting pressure pickups employed and corrected Pref. applied during
run, select most recent sensitivity calibration curve for each pick-

up. By interpolation between calibration reference pressures, de-

termine pickup sensitivity at actual run vazue of Pref.

Ex.: P sens. (Pickup #2) = 0.1261 mv/psi

Pf sens. (Pickup #14) 0.1319 mv/psi

P sens. (Pickup #25A) 0.0728 mv/psi :1

5. Divide electrical amplitudes of each signal by calibration sensi-

tivity to obtain pressure amplitudes during run.

Ex. Po = 5.905/.1261 4 46.83 psi
A.4
Pf = 4.751/.1319 = 36.02 psi

P= 1.979/.0728 =27.18 psi
K I!

6. Play back three pressure signals in pairs- (: o Pc), (Pf -Pc)

(Po - Pf) through phase measuring networks into Speedomax with timing

trace. Mark recorded phase difference charts at proper reading time.

7 Read gross phase angles from charts subtracting chart zeros.

Ex: X0= (P0 - p,) = 56.40

Of - PC) = '1.8
' :(Po- Pf) = 5"50

"' ., ". - - 7



8. Playback taped# post-run calibrations through same network and record

instrument phase shifts. Read these chart values for the pairs indicated.

Ex.: (Po - P.) Cal. =-0.4°

(Pf - PC) Cal. = 0.5

(P0 - Pf) Cal. =-0.9

9. Subtract calibration angles from gross phases to obtain net phase angles

during run* Compare net ' with difference between net Aand kc

as check on proper phasemeter settings.

o Di ital Computer Calculations

1 Tabulate punch on input carde and verify inputs of run numbers

reading times 's ; A Pop 'Fepi OASYG# '4j p A0 j Xp on two cards*

2i On fixed-deoimal control panel perform Stage I calculations to obtain

outputs of transfer function parameters and instantaneous fractional

mixture ratios Tabulate these values.

M~t Output values are%

.a 4388 A i 1.068

1 SR a 2.236 7, 70

[1 o z 7930

frmsame calculation, intermediate quantities re a o , P

I are obtained and tabulated.

BI s Intermediate values area

Ad
48. 11c FA 28.49 psi

N
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IU. Stage II Calculations

A# Steady State chamber properties

1. With nozzle insert plug, measure throat diameter and calculate

throat area.

Ex.. Diameter 0.885 in.

At = 0.6151

2. From PC, m total, and At, calculate experimental value of 0*

. . - = (581) .6,$,) (2.2) = 5158 ft/sec.

3. FromP and r, consult theoretical equilibrium calculations and

curves to obtain values for T., Y nozzle, 47/- ,

and molecular weight (m.)

x.: Tc (theor.) = 56060R dtc = 2370OR

: 1.2099 mc 21.55 ib/lb-mol

= 1.2382

49 Using theoretical combustion gas composition and properties,

compute

f'=f (/) cO/c* , c* (theor.), M1.

fxt. / 0 O. 7152

c* (theor.) = 5529 ft/sec.

M1 (for Ac/At = 11.49) .0515

5. Form the ratio /0* (actual) / c*(theor.)J and calculate

(act.) from this ratio multiplied by Tc (theor.)

Ixot T. (act.) Tc (the) (c*act. 5~ 605 (.8705) = 8790rt
c* th. /

"_ _ _ _ _ _ _ _ _ _ __li_ _ ._ _ _ __.. . ._ _11 k



I6e Employing the perfect gslaw and theoretical value 0 molecularweight, calculate gas density from P and Tc (act.)

- __ = "0  .. (581) (j-WL ) (21.55) - o.2o83 lb,./ft
R T0  (154) (4879)

7. From gas density, known chamber area, and total prope2l.ant flow, cal-

culate chamber exit velocity, u1 .

Em.= u1  = mtotal = (2.231)(1 ) = 218.2 ft/sec.

Y Ac (0.2063) (7,065)

8. From c* (act) and ( C" ), calculate C (act,) and no n-dimensionallie
Li* * . --

2Ul to form u1 =Mi.

. = 218. = 0.0591
co (act.)

B. Transient

I. Collect and retain output punched cards from Stage I digital computer

results.

C. Determination of correction factors.

1. From measured pressure distributions, assuming one-ciimensional, in-

compressible flow, calculate axial velocity distribmution. Correct

for two-dimensional effects by extending final veloity to non-dimen-

sional valuc ul averaged from teady state computat-ions.

E. (See Figure 39 for this distribution)

2. Determine arithmetic average of steady state paraifters PC, r, A
mt, Teo, (Sp. Gr.) fuels Co s 6P., o ol fractioans (xi).

L.1 P0 = 590 psia = 0. 122h-

.,r = .26 0. 2666.

fC: 0.2109 lbs/ft XV= 0.l449 L

=2.215 lbs/sec IXJ= 0. 1304L

______-------------
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(S,0.) 0.788

IA = 3965 ft/sec. 49',,4, = 137 psi

3o From mixture ratio, , and (Sp. Gr.)F , calculate average liquid

density at injection, 4
E .: 62-. (s.G.)o (r)+ (S.G.)F

0

r +1I
= 62.4 (1.142) (1.36) + 0.788 = 6i.9 lbs./ft

2,36

I7
4. Using known injector orifice area, mt. and , compute average in-

jector entrance velocity, 11

e, t It _101 ft/sec.

5. Calculate correlation parameter a

Ex.S FA 16.I/ 0.0795 7

6. From empirical droplet diameter correlation curve (Figure 24) estimate

mean inlet droplet diameter, d,

61 e0013 in.

7. Using data and empirical equations of N.B.S. circular, calcalate viscosity

at temperature T. for each of major constituent combustion gases.

_: 0o2 : ,Ai ~ ~ =6.03

r (from N.B.S.) = 137 micropoises

1 = (6.03) (137) = 826 micropoises

co:/ ,,= .10 ; o 16.? micropoises

l~e= (5-10) (165.7) = 847 micropoises

H20:A?¢ (direct from N.*BS. data) = 605 micropoises

H2" 21 7- 4,97;/^ e = 84.11 micropoises

A'r= 418 micropoises

. . . ... .:...,;.. . .,;" - -:J .: _ _ __.-- .. . .__ . .. . . . -. . . .



8. Compute the weighted sum X as the average mixture viscosity.

., '=X (826( (.1224) * (847) (.2666) + (605)

(.4494) + (84..l) (.130) " 653 micropoises.

9. Calculate Reynolds' number of injected liquid, Reo

Exg: Re 0 de 52.4

10. From drag coefficient curves for spherical particles estimate the proportion-

ality constant (CD Re ) at the calculated Reo

Ex.: (CD Reo) (at Re = 52.4) = 76.7

llo Using known A and (CD Re), calculate dimensional value of droplet drag

coefficient, k*.

zx.i k* = (CD Reo) 350 see-

12. Non-dimensionalizo k* by co and known chamber length.

Ex*: k =k* L = (350) (4-016)/12 = 0.0295
To 3965

13. Apply droplet drag coefficient, k, to gas velocity distribution, u x)

and integrate droplet dynamics equation:

u Ag k r-au) numerically on digital com-
dx

puter to find liquid velocity distribution, % (x). Note value of "U

(See Figure 39 for resultant Zi (x) curve.)

&*. t e0.0411

4. Numerically integrate 1/'A (x) to obtain distributed total time lag,#

6~) . Note value of .

Ex. (See Figure 40 for resultant Z.(x) curve). 4 = 29.92
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15, Compute two values of correction integrals$ I and 12 on digital calculator.
2/

SIi xdx = 13.66
(x)

12 f (~x=279.3
W

16. Calculate two time lag distribution correction factors, and

from equations: -t- z

17. Consult original gas velocity distribution curve in straight-line segmented

form to calculate two gas residence time correction factors, and a.

Ex. 4-j ,/0.0
A _)

D. Calculation of time lag parameters - Procedure #1.

. Assuming known value of £ (see above), tabulate, punch input cards, and
check values of Run no., reading time, Co, rj, T0, dTc  ' , , freq., a,

dir
, and %, on two cards. Collate these cards with output

cards from. Stage I into running procedure for digital computation of New-

ton-Rabson iteration on fixe2-decimal control panel.

2. Obtain solutions for (WAf) and reduce to

Exo: e 10300 milliseconds.4

"- _ , _ --. _- .. .. ., . _ _

" " .__ __ ' ~ -_,Z =I -i
_
_
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3. By same procedure, obtain values for .S/f Wi-, C0O L4 r , choose

proper quadrant for (O T , and reduce to

ii ~~U Fr. =O 0. 264 rad, .

= 0.17 millises.

h. Plot E and 7. as functions of reciprocal frequency at each chamber

pressure level and select asymptotic values for both parameters.

ix., t9  Asymptotic = 1.063 milliseconds (See Figure 43)

Z; Asymptotic = 0.11 milliseconds (See Figure 49)

e. Calculation of time lag parameters Procedure #2

1. Assuming known value pt j, tabulate and punch input cards identical to

those of procedure #1 with substitution of U1 for * Collating

these inputs into running procedure for complex analytical solution, per-

form calculations on fixed decimal control panel of digital computer.

2. Otain solutions for real and imaginary parts of sin (W ) = sin

listing constant outputs Cl1 02, 03.

SReal part of sin(w )=368
Imag. part of sin W(Jo e~ 21.81

C1 = 0.2913 C3  -0.002150

02 = 0e01299

3. Substituting = c + id into equation foraJ;a, calculate tan

(WUGe) and tanh (U)"5

Ec.__t tan (Wa ) - -Ci/Cz =o.16

tanh (WAS)= + 0.9990

_ _ A '
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I. Choosing appropriate quadrant for (Wd&j) and appropriate sign for

(ced.Q),reduce these values to real and imaginary parts of

c and d.

IJ. ct = '..203

d + 1.518

. Plot a and d as functions of frequency. Verify that d asymptote = 0

and determine c asymptote.

C asymptote = asymptote = 0.980

(see Figure 46)

6. Carry out similar digital computer calculation to obtain real and imagi-

nar parts of s r .d f =•

Ix.:I Real part of sin K~r= 0921029

Imag. part of sin Wr = -0.1096

y = -0.14 millises. ? = + 0.07 milliseos.

7. Plot y and f as functions of frequency. Verify that A asymptote = 0;

determine y asymptote = asymptote.

Ix: F' asymptote 0,.11 milliseos (See Figure 52)

a. Compare ( ) asy. and . from two procedures*

C. ) asy. - O1 milliaeconds

Procedure At

C~~a Mr. lo530 mi12±secso

as w 0.11 milliseconds

- I -
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III* Stage ..Il Calculations .

: A. itiwe time-lag and interaction index calculations.
1. Punch input cards similar to those of Stage II, omitting T or

ui and adding (P99 ) asymptote and asymptote. Collate

w.iith Stage I output cards into running procedure for exact Stage

III equation on fixed-decimal control panel of digital computer.

2. Obtain output values for interaction index, n and sinu r, and

I.- CosW

x.t n 0.49

= .7981

7I i
3. Choosing appropriate quadrant for (WO ), reduce to sensitive

time lags

Ex. t 0.59 milliseconds

B. Gross variation of time lag parameters with pressure.

I. Determine gross value of n from slope of log-log plot of

Ex. n (gross) = 1.41

,7.I~_I

__-___-_"_-__-__-_-___.____._,__._______________ _ "__,_______'_________ -_ I


